Symmetry Control of Unconventional Spin-Orbit Torques in IrO2

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 39 vom: 01. Sept., Seite e2301608
1. Verfasser: Patton, Michael (VerfasserIn)
Weitere Verfasser: Gurung, Gautam, Shao, Ding-Fu, Noh, Gahee, Mittelstaedt, Joseph A, Mazur, Marcel, Kim, Jong-Woo, Ryan, Philip J, Tsymbal, Evgeny Y, Choi, Si-Young, Ralph, Daniel C, Rzchowski, Mark S, Nan, Tianxiang, Eom, Chang-Beom
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article epitaxial thin films spin Hall effect spintronics unconventional spin-orbit torques
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Spin-orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy-efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in-plane magnetic switching. Unconventional spin-orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic-based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin-orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2 ), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin-orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2 thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy-efficient magnetic switching in spintronic devices
Beschreibung:Date Revised 27.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202301608