PanVA : Pangenomic Variant Analysis

Genomics researchers increasingly use multiple reference genomes to comprehensively explore genetic variants underlying differences in detectable characteristics between organisms. Pangenomes allow for an efficient data representation of multiple related genomes and their associated metadata. Howeve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 01. Juli, Seite 4895-4909
1. Verfasser: van den Brandt, Astrid (VerfasserIn)
Weitere Verfasser: Jonkheer, Eef M, van Workum, Dirk-Jan M, van de Wetering, Huub, Smit, Sandra, Vilanova, Anna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM357691660
003 DE-627
005 20240703232259.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3282364  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM357691660 
035 |a (NLM)37267130 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a van den Brandt, Astrid  |e verfasserin  |4 aut 
245 1 0 |a PanVA  |b Pangenomic Variant Analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2024 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Genomics researchers increasingly use multiple reference genomes to comprehensively explore genetic variants underlying differences in detectable characteristics between organisms. Pangenomes allow for an efficient data representation of multiple related genomes and their associated metadata. However, current visual analysis approaches for exploring these complex genotype-phenotype relationships are often based on single reference approaches or lack adequate support for interpreting the variants in the genomic context with heterogeneous (meta)data. This design study introduces PanVA, a visual analytics design for pangenomic variant analysis developed with the active participation of genomics researchers. The design uniquely combines tailored visual representations with interactions such as sorting, grouping, and aggregation, allowing users to navigate and explore different perspectives on complex genotype-phenotype relations. Through evaluation in the context of plants and pathogen research, we show that PanVA helps researchers explore variants in genes and generate hypotheses about their role in phenotypic variation 
650 4 |a Journal Article 
700 1 |a Jonkheer, Eef M  |e verfasserin  |4 aut 
700 1 |a van Workum, Dirk-Jan M  |e verfasserin  |4 aut 
700 1 |a van de Wetering, Huub  |e verfasserin  |4 aut 
700 1 |a Smit, Sandra  |e verfasserin  |4 aut 
700 1 |a Vilanova, Anna  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 01. Juli, Seite 4895-4909  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:4895-4909 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3282364  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 01  |c 07  |h 4895-4909