An adjusted partial least squares regression framework to utilize additional exposure information in environmental mixture data analysis

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 8 vom: 01., Seite 1790-1811
1. Verfasser: Du, Ruofei (VerfasserIn)
Weitere Verfasser: Luo, Li, Hudson, Laurie G, Nozadi, Sara, Lewis, Johnnye
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Adjusted SIMPLS Birth Cohort Navajo metal mixture exposure mixture analysis
LEADER 01000caa a22002652 4500
001 NLM357625714
003 DE-627
005 20240921234555.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2043254  |2 doi 
028 5 2 |a pubmed24n1541.xml 
035 |a (DE-627)NLM357625714 
035 |a (NLM)37260474 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Ruofei  |e verfasserin  |4 aut 
245 1 3 |a An adjusted partial least squares regression framework to utilize additional exposure information in environmental mixture data analysis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In a large-scale environmental health population study that is composed of subprojects, often different fractions of participants out of the total enrolled have measures of specific outcomes. It's conceptually reasonable to assume the association study would benefit from utilizing additional exposure information from those with a specific outcome not measured. Partial least squares regression is a practical approach to determine the exposure-outcome associations for mixture data. Like a typical regression approach, however, the partial least squares regression requires that each data observation must have both complete covariate and outcome for model fitting. In this paper, we propose novel adjustments to the general partial least squares regression to estimate and examine the association effects of individual environmental exposure to an outcome within a more complete context of the study population's environmental mixture exposures. The proposed framework takes advantage of the bilinear model structure. It allows information from all participants, with or without the outcome values, to contribute to the model fitting and the assessment of association effects. Using this proposed framework, incorporation of additional information will lead to smaller root mean square errors in the estimation of association effects, and improve the ability to assess the significance of the effects 
650 4 |a Journal Article 
650 4 |a Adjusted SIMPLS 
650 4 |a Birth Cohort 
650 4 |a Navajo 
650 4 |a metal mixture exposure 
650 4 |a mixture analysis 
700 1 |a Luo, Li  |e verfasserin  |4 aut 
700 1 |a Hudson, Laurie G  |e verfasserin  |4 aut 
700 1 |a Nozadi, Sara  |e verfasserin  |4 aut 
700 1 |a Lewis, Johnnye  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 8 vom: 01., Seite 1790-1811  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:8  |g day:01  |g pages:1790-1811 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2043254  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 8  |b 01  |h 1790-1811