Resolving intergenotypic Striga resistance in sorghum

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 17 vom: 13. Sept., Seite 5294-5306
1. Verfasser: Mutinda, Sylvia (VerfasserIn)
Weitere Verfasser: Mobegi, Fredrick M, Hale, Brett, Dayou, Olivier, Ateka, Elijah, Wijeratne, Asela, Wicke, Susann, Bellis, Emily S, Runo, Steven
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't Cell wall-based resistance comparative transcriptomics lignin-based resistance parasitic plants pathogen-associated molecular patterns programmed cell death weighted gene co-expression networks
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Genetic underpinnings of host-pathogen interactions in the parasitic plant Striga hermonthica, a root parasitic plant that ravages cereals in sub-Saharan Africa, are unclear. We performed a comparative transcriptome study on five genotypes of sorghum exhibiting diverse resistance responses to S. hermonthica using weighted gene co-expression network analysis (WGCNA). We found that S. hermonthica elicits both basal and effector-triggered immunity-like a bona fide pathogen. The resistance response was genotype specific. Some resistance responses followed the salicylic acid-dependent signaling pathway for systemic acquired resistance characterized by cell wall reinforcements, lignification, and callose deposition, while in others the WRKY-dependent signaling pathway was activated, leading to a hypersensitive response. In some genotypes, both modes of resistance were activated, while in others either mode dominated the resistance response. Cell wall-based resistance was common to all sorghum genotypes but strongest in IS2814, while a hypersensitive response was specific to N13, IS9830, and IS41724. WGCNA further allowed for pinpointing of S. hermonthica resistance causative genes in sorghum, including glucan synthase-like 10 gene, a pathogenesis-related thaumatin-like family gene, and a phosphoinositide phosphatase gene. Such candidate genes will form a good basis for subsequent functional validation and possibly future resistance breeding
Beschreibung:Date Completed 14.09.2023
Date Revised 18.09.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad210