Single Image Dehazing Using Saturation Line Prior

Saturation information in hazy images is conducive to effective haze removal, However, existing saturation-based dehazing methods just focus on the saturation value of each pixel itself, while the higher-level distribution characteristic between pixels regarding saturation remains to be harnessed. I...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 3238-3253
1. Verfasser: Ling, Pengyang (VerfasserIn)
Weitere Verfasser: Chen, Huaian, Tan, Xiao, Jin, Yi, Chen, Enhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM357589319
003 DE-627
005 20250304203518.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3279980  |2 doi 
028 5 2 |a pubmed25n1191.xml 
035 |a (DE-627)NLM357589319 
035 |a (NLM)37256802 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ling, Pengyang  |e verfasserin  |4 aut 
245 1 0 |a Single Image Dehazing Using Saturation Line Prior 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2023 
500 |a Date Revised 08.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Saturation information in hazy images is conducive to effective haze removal, However, existing saturation-based dehazing methods just focus on the saturation value of each pixel itself, while the higher-level distribution characteristic between pixels regarding saturation remains to be harnessed. In this paper, we observe that the pixels, which share the same surface reflectance coefficient in the local patches of haze-free images, exhibit a linear relationship between their saturation component and the reciprocal of their brightness component in the corresponding hazy images normalized by atmospheric light. Furthermore, the intercept of the line described by this linear relationship on the saturation axis is exactly the saturation value of these pixels in the haze-free images. Using this characteristic of saturation, termed saturation line prior (SLP), the transmission estimation is translated into the construction of saturation lines. Accordingly, a new dehazing framework using SLP is proposed, which employs the intrinsic relevance between pixels to achieve a reliable saturation line construction for transmission estimation. This approach can recover the fine details and attain realistic colors from hazy scenes, resulting in a remarkable visibility improvement. Extensive experiments in real-world and synthetic hazy images show that the proposed method performs favorably against state-of-the-art dehazing methods. Code is available on https://github.com/LPengYang/Saturation-Line-Prior 
650 4 |a Journal Article 
700 1 |a Chen, Huaian  |e verfasserin  |4 aut 
700 1 |a Tan, Xiao  |e verfasserin  |4 aut 
700 1 |a Jin, Yi  |e verfasserin  |4 aut 
700 1 |a Chen, Enhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 3238-3253  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:3238-3253 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3279980  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 3238-3253