Magi-Net : Meta Negative Network for Early Activity Prediction

Early activity prediction/recognition aims to recognize action categories before they are fully conveyed. Compared to full-length action sequences, partial video sequences only provide insufficient discrimination information, which makes predicting the class labels for some similar activities challe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 31., Seite 3254-3265
1. Verfasser: Wang, Wenqian (VerfasserIn)
Weitere Verfasser: Chang, Faliang, Zhang, Junhao, Yan, Rui, Liu, Chunsheng, Wang, Bin, Shou, Mike Zheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM357589297
003 DE-627
005 20231226072922.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3279991  |2 doi 
028 5 2 |a pubmed24n1191.xml 
035 |a (DE-627)NLM357589297 
035 |a (NLM)37256800 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wenqian  |e verfasserin  |4 aut 
245 1 0 |a Magi-Net  |b Meta Negative Network for Early Activity Prediction 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2023 
500 |a Date Revised 08.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Early activity prediction/recognition aims to recognize action categories before they are fully conveyed. Compared to full-length action sequences, partial video sequences only provide insufficient discrimination information, which makes predicting the class labels for some similar activities challenging, especially when only very few frames can be observed. To address this challenge, in this paper, we propose a novel meta negative network, namely, Magi-Net, that utilizes a contrastive learning scheme to alleviate the insufficiency of discriminative information. In our Magi-Net model, the positive samples are generated by augmenting an input anchor conditioned on all observation ratios, while the negative samples are selected from a trainable negative look-up memory (LUM) table, which stores the training samples and the corresponding misleading categories. Furthermore, a meta negative sample optimization strategy (MetaSOS) is proposed to boost the training of Magi-Net by encouraging the model to learn from the most informative negative samples via a meta learning scheme. Extensive experiments are conducted on several public skeleton-based activity datasets, and the results show the efficacy of the proposed Magi-Net model 
650 4 |a Journal Article 
700 1 |a Chang, Faliang  |e verfasserin  |4 aut 
700 1 |a Zhang, Junhao  |e verfasserin  |4 aut 
700 1 |a Yan, Rui  |e verfasserin  |4 aut 
700 1 |a Liu, Chunsheng  |e verfasserin  |4 aut 
700 1 |a Wang, Bin  |e verfasserin  |4 aut 
700 1 |a Shou, Mike Zheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 31., Seite 3254-3265  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:31  |g pages:3254-3265 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3279991  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 31  |h 3254-3265