|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM357589297 |
003 |
DE-627 |
005 |
20231226072922.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2023.3279991
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1191.xml
|
035 |
|
|
|a (DE-627)NLM357589297
|
035 |
|
|
|a (NLM)37256800
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Wenqian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Magi-Net
|b Meta Negative Network for Early Activity Prediction
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.06.2023
|
500 |
|
|
|a Date Revised 08.06.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Early activity prediction/recognition aims to recognize action categories before they are fully conveyed. Compared to full-length action sequences, partial video sequences only provide insufficient discrimination information, which makes predicting the class labels for some similar activities challenging, especially when only very few frames can be observed. To address this challenge, in this paper, we propose a novel meta negative network, namely, Magi-Net, that utilizes a contrastive learning scheme to alleviate the insufficiency of discriminative information. In our Magi-Net model, the positive samples are generated by augmenting an input anchor conditioned on all observation ratios, while the negative samples are selected from a trainable negative look-up memory (LUM) table, which stores the training samples and the corresponding misleading categories. Furthermore, a meta negative sample optimization strategy (MetaSOS) is proposed to boost the training of Magi-Net by encouraging the model to learn from the most informative negative samples via a meta learning scheme. Extensive experiments are conducted on several public skeleton-based activity datasets, and the results show the efficacy of the proposed Magi-Net model
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Chang, Faliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Junhao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Chunsheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shou, Mike Zheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 32(2023) vom: 31., Seite 3254-3265
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2023
|g day:31
|g pages:3254-3265
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2023.3279991
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2023
|b 31
|h 3254-3265
|