Evaluation of Dual Domain Mass Transfer in Porous Media at the Pore Scale

© 2023 National Ground Water Association.

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1979. - 62(2024), 2 vom: 03. März, Seite 260-275
1. Verfasser: Dorchester, Leland (VerfasserIn)
Weitere Verfasser: Day-Lewis, Frederick D, Singha, Kamini
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Water Pollutants, Chemical Solutions
LEADER 01000caa a22002652 4500
001 NLM357568230
003 DE-627
005 20240804232117.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gwat.13328  |2 doi 
028 5 2 |a pubmed24n1491.xml 
035 |a (DE-627)NLM357568230 
035 |a (NLM)37254685 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dorchester, Leland  |e verfasserin  |4 aut 
245 1 0 |a Evaluation of Dual Domain Mass Transfer in Porous Media at the Pore Scale 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.03.2024 
500 |a Date Revised 03.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 National Ground Water Association. 
520 |a Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore-scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive-tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore-scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic-length scale estimated from a best-fit dual-domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass-transfer rate; and (3) a comparison of length scales associated with the mass-transfer rate (Lα ) and those associated with calculation of the Peclet number (LPe ) show LPe is commonly larger than Lα . These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore-water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single-porosity domains 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Water Pollutants, Chemical  |2 NLM 
650 7 |a Solutions  |2 NLM 
700 1 |a Day-Lewis, Frederick D  |e verfasserin  |4 aut 
700 1 |a Singha, Kamini  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 62(2024), 2 vom: 03. März, Seite 260-275  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnns 
773 1 8 |g volume:62  |g year:2024  |g number:2  |g day:03  |g month:03  |g pages:260-275 
856 4 0 |u http://dx.doi.org/10.1111/gwat.13328  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2024  |e 2  |b 03  |c 03  |h 260-275