Prototype Adaption and Projection for Few- and Zero-Shot 3D Point Cloud Semantic Segmentation

In this work, we address the challenging task of few-shot and zero-shot 3D point cloud semantic segmentation. The success of few-shot semantic segmentation in 2D computer vision is mainly driven by the pre-training on large-scale datasets like imagenet. The feature extractor pre-trained on large-sca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 30., Seite 3199-3211
1. Verfasser: He, Shuting (VerfasserIn)
Weitere Verfasser: Jiang, Xudong, Jiang, Wei, Ding, Henghui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM357550242
003 DE-627
005 20231226072831.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3279660  |2 doi 
028 5 2 |a pubmed24n1191.xml 
035 |a (DE-627)NLM357550242 
035 |a (NLM)37252865 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Shuting  |e verfasserin  |4 aut 
245 1 0 |a Prototype Adaption and Projection for Few- and Zero-Shot 3D Point Cloud Semantic Segmentation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2023 
500 |a Date Revised 08.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we address the challenging task of few-shot and zero-shot 3D point cloud semantic segmentation. The success of few-shot semantic segmentation in 2D computer vision is mainly driven by the pre-training on large-scale datasets like imagenet. The feature extractor pre-trained on large-scale 2D datasets greatly helps the 2D few-shot learning. However, the development of 3D deep learning is hindered by the limited volume and instance modality of datasets due to the significant cost of 3D data collection and annotation. This results in less representative features and large intra-class feature variation for few-shot 3D point cloud segmentation. As a consequence, directly extending existing popular prototypical methods of 2D few-shot classification/segmentation into 3D point cloud segmentation won't work as well as in 2D domain. To address this issue, we propose a Query-Guided Prototype Adaption (QGPA) module to adapt the prototype from support point clouds feature space to query point clouds feature space. With such prototype adaption, we greatly alleviate the issue of large feature intra-class variation in point cloud and significantly improve the performance of few-shot 3D segmentation. Besides, to enhance the representation of prototypes, we introduce a Self-Reconstruction (SR) module that enables prototype to reconstruct the support mask as well as possible. Moreover, we further consider zero-shot 3D point cloud semantic segmentation where there is no support sample. To this end, we introduce category words as semantic information and propose a semantic-visual projection model to bridge the semantic and visual spaces. Our proposed method surpasses state-of-the-art algorithms by a considerable 7.90% and 14.82% under the 2-way 1-shot setting on S3DIS and ScanNet benchmarks, respectively 
650 4 |a Journal Article 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
700 1 |a Jiang, Wei  |e verfasserin  |4 aut 
700 1 |a Ding, Henghui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 30., Seite 3199-3211  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:30  |g pages:3199-3211 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3279660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 30  |h 3199-3211