The transcription factor VaNAC72-regulated expression of the VaCP17 gene from Chinese wild Vitis amurensis enhances cold tolerance in transgenic grape (V. vinifera)

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 200(2023) vom: 02. Juli, Seite 107768
1. Verfasser: Qin, Haoxiang (VerfasserIn)
Weitere Verfasser: Cui, Xiaoyue, Shu, Xin, Zhang, Jianxia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Cascade regulation Cold tolerance Protein interaction Transcription factor VaNAC72 V. amurensis VaCP17 Plant Proteins Transcription Factors
LEADER 01000naa a22002652 4500
001 NLM357497333
003 DE-627
005 20231226072724.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2023.107768  |2 doi 
028 5 2 |a pubmed24n1191.xml 
035 |a (DE-627)NLM357497333 
035 |a (NLM)37247556 
035 |a (PII)S0981-9428(23)00279-6 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Haoxiang  |e verfasserin  |4 aut 
245 1 4 |a The transcription factor VaNAC72-regulated expression of the VaCP17 gene from Chinese wild Vitis amurensis enhances cold tolerance in transgenic grape (V. vinifera) 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.06.2023 
500 |a Date Revised 19.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 Elsevier Masson SAS. All rights reserved. 
520 |a Papain-like cysteine proteases (PLCP) play diverse roles in plant biology. In our previous studies, a VaCP17 gene from the cold-tolerant Vitis amurensis accession 'Shuangyou' was isolated and its role in cold tolerance was preliminarily verified in Arabidopsis. Here, we confirmed the function of VaCP17 in cold tolerance by stably overexpressing VaCP17 in the cold-sensitive Vitis vinifera cultivar 'Thompson Seedless' and transiently silencing VaCP17 in 'Shuangyou' leaves. The results showed that overexpression of VaCP17 improved the cold tolerance in 'Thompson Seedless' as manifested by reduced electrolyte leakage and malondialdehyde accumulation, chlorophyll homeostasis, increased antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) activitiy, and rapid up-regulation of stress-related genes (VvKIN2, VvRD29B, and VvNCED1) compared with wild-type line. Conversely, RNA interfere-mediated knockdown of VaCP17 in 'Shuangyou' leaves resulted in opposite physiological and biochemical responses and exacerbated leaves wilting compared with control. Subsequently, by yeast one-hybrid, dual-luciferase assays, and transient overexpression of VaNAC72 in 'Shuangyou' leaves, a VaCP17-interacting protein VaNAC72 was confirmed to promote the expression of VaCP17 under cold stress, which depends on abscisic acid, methyl jasmonate, and salicylic acid signaling. By yeast two-hybrids, bimolecular fluorescence complementation and luciferase complementation assays, it was found that VaNAC72 could form homodimers or heterodimers with VaCBF2. Furthermore, co-expression analysis confirmed that VaNAC72 works synergistically with VaCBF2 or VaCP17 to up-regulate the expression of VaCP17. In conclusion, the study revealed that the VaNAC72-VaCP17 module positively regulated cold tolerance in grapevine, and this knowledge is useful for further revealing the cold-tolerance mechanism of V. amurensis and grape molecular breeding 
650 4 |a Journal Article 
650 4 |a Cascade regulation 
650 4 |a Cold tolerance 
650 4 |a Protein interaction 
650 4 |a Transcription factor VaNAC72 
650 4 |a V. amurensis 
650 4 |a VaCP17 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Transcription Factors  |2 NLM 
700 1 |a Cui, Xiaoyue  |e verfasserin  |4 aut 
700 1 |a Shu, Xin  |e verfasserin  |4 aut 
700 1 |a Zhang, Jianxia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 200(2023) vom: 02. Juli, Seite 107768  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:200  |g year:2023  |g day:02  |g month:07  |g pages:107768 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2023.107768  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 200  |j 2023  |b 02  |c 07  |h 107768