Hierarchical Engineering of Sorption-Based Atmospheric Water Harvesters

© 2023 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 12 vom: 01. März, Seite e2209134
1. Verfasser: Song, Yan (VerfasserIn)
Weitere Verfasser: Zeng, Mengyue, Wang, Xueyang, Shi, Peiru, Fei, Minfei, Zhu, Jia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review atmospheric‐water harvesting condensation enhancement sorbent design water harvesters water scarcity
Beschreibung
Zusammenfassung:© 2023 Wiley‐VCH GmbH.
Harvesting water from air in sorption-based devices is a promising solution to decentralized water production, aiming for providing potable water anywhere, anytime. This technology involves a series of coupled processes occurring at distinct length scales, ranging from nanometer to meter and even larger, including water sorption/desorption at the nanoscale, condensation at the mesoscale, device development at the macroscale and water scarcity assessment at the global scale. Comprehensive understanding and bespoke designs at every scale are thus needed to improve the water-harvesting performance. For this purpose, a brief introduction of the global water crisis and its key characteristics is provided to clarify the impact potential and design criteria of water harvesters. Next the latest molecular-level optimizations of sorbents for efficient moisture capture and release are discussed. Then, novel microstructuring of surfaces to enhance dropwise condensation, which is favorable for atmospheric water generation, is shown. After that, system-level optimizations of sorbent-assisted water harvesters to achieve high-yield, energy-efficient, and low-cost water harvesting are highlighted. Finally, future directions toward practical sorption-based atmospheric water harvesting are outlined
Beschreibung:Date Revised 21.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202209134