Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 74(2023), 17 vom: 13. Sept., Seite 5218-5235
Auteur principal: Liu, Mei (Auteur)
Autres auteurs: Kang, Baoshan, Wu, Huijie, Aranda, Miguel A, Peng, Bin, Liu, Liming, Fei, Zhangjun, Hong, Ni, Gu, Qinsheng
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't CGMMV SA disease resistance flavonoid metabolism metabolome phytohormones plant development transcriptome plus... watermelon (Citrullus) Plant Growth Regulators
LEADER 01000caa a22002652c 4500
001 NLM357378989
003 DE-627
005 20250304200451.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erad197  |2 doi 
028 5 2 |a pubmed25n1190.xml 
035 |a (DE-627)NLM357378989 
035 |a (NLM)37235634 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Mei  |e verfasserin  |4 aut 
245 1 0 |a Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.09.2023 
500 |a Date Revised 18.09.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a CGMMV 
650 4 |a SA 
650 4 |a disease resistance 
650 4 |a flavonoid metabolism 
650 4 |a metabolome 
650 4 |a phytohormones 
650 4 |a plant development 
650 4 |a transcriptome 
650 4 |a watermelon (Citrullus) 
650 7 |a Plant Growth Regulators  |2 NLM 
700 1 |a Kang, Baoshan  |e verfasserin  |4 aut 
700 1 |a Wu, Huijie  |e verfasserin  |4 aut 
700 1 |a Aranda, Miguel A  |e verfasserin  |4 aut 
700 1 |a Peng, Bin  |e verfasserin  |4 aut 
700 1 |a Liu, Liming  |e verfasserin  |4 aut 
700 1 |a Fei, Zhangjun  |e verfasserin  |4 aut 
700 1 |a Hong, Ni  |e verfasserin  |4 aut 
700 1 |a Gu, Qinsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 74(2023), 17 vom: 13. Sept., Seite 5218-5235  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:74  |g year:2023  |g number:17  |g day:13  |g month:09  |g pages:5218-5235 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erad197  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2023  |e 17  |b 13  |c 09  |h 5218-5235