|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM357245717 |
003 |
DE-627 |
005 |
20231226072153.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202300696
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1190.xml
|
035 |
|
|
|a (DE-627)NLM357245717
|
035 |
|
|
|a (NLM)37222174
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Lili
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Thermocells can continuously convert heat into electricity, and they are widely used to power wearable electronic devices. However, they have a risk of leakage and poor mechanical properties. Although quasi-solid ionic thermocells can overcome the issue of electrolyte leakage, the trade-off between their excellent mechanical properties and high thermopower remains a major challenge. In this study, stretching-induced crystallization and the thermoelectric effect are combined to propose a high-strength quasi-solid stretchable polyvinyl alcohol thermogalvanic thermocell (SPTC) with a large tensile strength of 19 MPa and high thermopower of 6.5 mV K-1 . The SPTC exhibits a high stretchability of 1300%, ultrahigh toughness of 163.4 MJ m-3 , and high specific output power density of 1969 µW m-2 K-2 . These comprehensive properties are superior to those of previously reported quasi-solid stretchable thermogalvanic thermocells. The use of SPTC-based systems in wearable devices for energy-autonomous strain sensors and health monitoring is demonstrated. This can facilitate the rapid implementation of sustainable wearable electronics in the Internet of Things era
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a strength
|
650 |
|
4 |
|a stretchable thermogalvanic thermocells
|
650 |
|
4 |
|a stretching-induced crystallization
|
650 |
|
4 |
|a thermal energy harvesting
|
650 |
|
4 |
|a toughness
|
650 |
|
4 |
|a wearable devices
|
700 |
1 |
|
|a Zhang, Ding
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Peijia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mao, Yin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Jiaqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fang, Yanjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Rujun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 32 vom: 04. Aug., Seite e2300696
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:32
|g day:04
|g month:08
|g pages:e2300696
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202300696
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 32
|b 04
|c 08
|h e2300696
|