Win-Win by Competition : Auxiliary-Free Cloth-Changing Person Re-Identification

Recent person Re-IDentification (ReID) systems have been challenged by changes in personnel clothing, leading to the study of Cloth-Changing person ReID (CC-ReID). Commonly used techniques involve incorporating auxiliary information (e.g., body masks, gait, skeleton, and keypoints) to accurately ide...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 22., Seite 2985-2999
1. Verfasser: Yang, Zhengwei (VerfasserIn)
Weitere Verfasser: Zhong, Xian, Zhong, Zhun, Liu, Hong, Wang, Zheng, Satoh, Shin'Ichi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Recent person Re-IDentification (ReID) systems have been challenged by changes in personnel clothing, leading to the study of Cloth-Changing person ReID (CC-ReID). Commonly used techniques involve incorporating auxiliary information (e.g., body masks, gait, skeleton, and keypoints) to accurately identify the target pedestrian. However, the effectiveness of these methods heavily relies on the quality of auxiliary information and comes at the cost of additional computational resources, ultimately increasing system complexity. This paper focuses on achieving CC-ReID by effectively leveraging the information concealed within the image. To this end, we introduce an Auxiliary-free Competitive IDentification (ACID) model. It achieves a win-win situation by enriching the identity (ID)-preserving information conveyed by the appearance and structure features while maintaining holistic efficiency. In detail, we build a hierarchical competitive strategy that progressively accumulates meticulous ID cues with discriminating feature extraction at the global, channel, and pixel levels during model inference. After mining the hierarchical discriminative clues for appearance and structure features, these enhanced ID-relevant features are crosswise integrated to reconstruct images for reducing intra-class variations. Finally, by combing with self- and cross-ID penalties, the ACID is trained under a generative adversarial learning framework to effectively minimize the distribution discrepancy between the generated data and real-world data. Experimental results on four public cloth-changing datasets (i.e., PRCC-ReID, VC-Cloth, LTCC-ReID, and Celeb-ReID) demonstrate the proposed ACID can achieve superior performance over state-of-the-art methods. The code is available soon at: https://github.com/BoomShakaY/Win-CCReID
Beschreibung:Date Completed 28.05.2023
Date Revised 28.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3277389