A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction

This paper introduces a sharp-interface approach to simulating fluid-structure interaction (FSI) involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) scheme extends our prio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 488(2023) vom: 01. Sept.
1. Verfasser: Kolahdouz, Ebrahim M (VerfasserIn)
Weitere Verfasser: Wells, David R, Rossi, Simone, Aycock, Kenneth I, Craven, Brent A, Griffith, Boyce E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Fluid-structure interaction immersed Lagrangian-Eulerian method immersed interface method inferior vena cava filter nonlinear continuum mechanics
LEADER 01000caa a22002652 4500
001 NLM357167546
003 DE-627
005 20240902232504.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2023.112174  |2 doi 
028 5 2 |a pubmed24n1520.xml 
035 |a (DE-627)NLM357167546 
035 |a (NLM)37214277 
035 |a (PII)112174 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kolahdouz, Ebrahim M  |e verfasserin  |4 aut 
245 1 2 |a A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a sharp-interface approach to simulating fluid-structure interaction (FSI) involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) scheme extends our prior work on integrating partitioned and immersed approaches to rigid-body FSI. Our numerical approach incorporates the geometrical and domain solution flexibility of the immersed boundary (IB) method with an accuracy comparable to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects fluid and solid subproblems through simple interface conditions. As in earlier work, we use approximate Lagrange multiplier forces to treat the kinematic interface conditions along the fluid-structure interface. This penalty approach simplifies the linear solvers needed by our formulation by introducing two representations of the fluid-structure interface, one that moves with the fluid and another that moves with the structure, that are connected by stiff springs. This approach also enables the use of multi-rate time stepping, which allows us to use different time step sizes for the fluid and structure subproblems. Our fluid solver relies on an immersed interface method (IIM) for discrete surfaces to impose stress jump conditions along complex interfaces while enabling the use of fast structured-grid solvers for the incompressible Navier-Stokes equations. The dynamics of the volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. This formulation also readily accommodates compressible structures with a constant total volume, and it can handle fully compressible solid structures for cases in which at least part of the solid boundary does not contact the incompressible fluid. Selected grid convergence studies demonstrate second-order convergence in volume conservation and in the pointwise discrepancies between corresponding positions of the two interface representations as well as between first and second-order convergence in the structural displacements. The time stepping scheme is also demonstrated to yield second-order convergence. To assess and validate the robustness and accuracy of the new algorithm, comparisons are made with computational and experimental FSI benchmarks. Test cases include both smooth and sharp geometries in various flow conditions. We also demonstrate the capabilities of this methodology by applying it to model the transport and capture of a geometrically realistic, deformable blood clot in an inferior vena cava filter 
650 4 |a Journal Article 
650 4 |a Fluid-structure interaction 
650 4 |a immersed Lagrangian-Eulerian method 
650 4 |a immersed interface method 
650 4 |a inferior vena cava filter 
650 4 |a nonlinear continuum mechanics 
700 1 |a Wells, David R  |e verfasserin  |4 aut 
700 1 |a Rossi, Simone  |e verfasserin  |4 aut 
700 1 |a Aycock, Kenneth I  |e verfasserin  |4 aut 
700 1 |a Craven, Brent A  |e verfasserin  |4 aut 
700 1 |a Griffith, Boyce E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 488(2023) vom: 01. Sept.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:488  |g year:2023  |g day:01  |g month:09 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2023.112174  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 488  |j 2023  |b 01  |c 09