Dissecting the features of TGA gene family in Saccharum and the functions of ScTGA1 under biotic stresses

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 200(2023) vom: 05. Juli, Seite 107760
1. Verfasser: Zhao, Zhennan (VerfasserIn)
Weitere Verfasser: Zhang, Renren, Wang, Dongjiao, Zhang, Jing, Zang, Shoujian, Zou, Wenhui, Feng, Aoyin, You, Chuihuai, Su, Yachun, Wu, Qibin, Que, Youxiong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Biotic stress Expression pattern Function validation Genome-wide Saccharum TGA gene family Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses
Beschreibung:Date Completed 12.06.2023
Date Revised 12.06.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.107760