Periodic and Aperiodic NiFe Nanomagnet/Ferrimagnet Hybrid Structures for 2D Magnon Steering and Interferometry with High Extinction Ratio

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 31 vom: 23. Aug., Seite e2301087
Auteur principal: Watanabe, Sho (Auteur)
Autres auteurs: Bhat, Vinayak S, Mucchietto, Andrea, Dayi, Elif N, Shan, Shixuan, Grundler, Dirk
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article magnon interferometry magnon steering magnonic crystals wave-based computing yttrium iron garnet
Description
Résumé:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Magnons, quanta of spin waves, are known to enable information processing with low power consumption at the nanoscale. So far, however, experimentally realized half-adders, wave-logic, and binary output operations are based on few µm-long spin waves and restricted to one spatial direction. Here, magnons with wavelengths λ down to 50 nm in ferrimagnetic Y3 Fe5 O12 below 2D lattices of periodic and aperiodic ferromagnetic nanopillars are explored. Due to their high rotational symmetries and engineered magnetic resonances, the lattices allow short-wave magnons to propagate in arbitrarily chosen on-chip directions when excited by conventional coplanar waveguides. Performing interferometry with magnons over macroscopic distances of 350 × λ without loss of coherency, unprecedentedly high extinction ratios of up to 26 (±8) dB [31 (±2) dB] for a binary 1/0 output operation at λ = 69 nm (λ = 154 nm) are achieved in this work. The reported findings and design criteria for 2D magnon interferometry are particularly important in view of the realization of complex neuronal networks recently proposed for interfering spin waves underneath nanomagnets
Description:Date Revised 03.08.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202301087