Surface Electronic Structure Engineering of Manganese Bismuth Tellurides Guided by Micro-Focused Angle-Resolved Photoemission

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 36 vom: 14. Sept., Seite e2301907
1. Verfasser: Volckaert, Klara (VerfasserIn)
Weitere Verfasser: Majchrzak, Paulina, Biswas, Deepnarayan, Jones, Alfred J H, Bianchi, Marco, Jiang, Zhihao, Dubourg, Raphaël, Stenshøj, Rasmus Ørnekoll, Jensen, Mads Lykke, Jones, Nykola C, Hoffmann, Søren V, Mi, Jian-Li, Bremholm, Martin, Pan, Xing-Chen, Chen, Yong P, Hofmann, Philip, Miwa, Jill A, Ulstrup, Søren
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article alkali doping magnetic topological insulators microARPES surface band structure engineering tunable topological bands
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Modification of the electronic structure of quantum matter by ad atom deposition allows for directed fundamental design of electronic and magnetic properties. This concept is utilized in the present study in order to tune the surface electronic structure of magnetic topological insulators based on MnBi2 Te4 . The topological bands of these systems are typically strongly electron-doped and hybridized with a manifold of surface states that place the salient topological states out of reach of electron transport and practical applications. In this study, micro-focused angle-resolved photoemission spectroscopy (microARPES) provides direct access to the termination-dependent dispersion of MnBi2 Te4 and MnBi4 Te7 during in situ deposition of rubidium atoms. The resulting band structure changes are found to be highly complex, encompassing coverage-dependent ambipolar doping effects, removal of surface state hybridization, and the collapse of a surface state band gap. In addition, doping-dependent band bending is found to give rise to tunable quantum well states. This wide range of observed electronic structure modifications can provide new ways to exploit the topological states and the rich surface electronic structures of manganese bismuth tellurides
Beschreibung:Date Revised 07.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202301907