|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM357037375 |
003 |
DE-627 |
005 |
20240321235234.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202211783
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1338.xml
|
035 |
|
|
|a (DE-627)NLM357037375
|
035 |
|
|
|a (NLM)37201199
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Graeber, Gustav
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Extreme Water Uptake of Hygroscopic Hydrogels through Maximized Swelling-Induced Salt Loading
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Hygroscopic hydrogels are emerging as scalable and low-cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel-salt composites are characterized. By tuning the salt concentration of the swelling solutions and the cross-linking properties of the gels, hygroscopic hydrogels with extremely high salt loadings are synthesized, which enable unprecedented water uptakes of 1.79 and 3.86 gg-1 at relative humidity (RH) of 30% and 70%, respectively. At 30% RH, this exceeds previously reported water uptakes of metal-organic frameworks by over 100% and of hydrogels by 15%, bringing the uptake within 93% of the fundamental limit of hygroscopic salts while avoiding leakage problems common in salt solutions. By modeling the salt-vapor equilibria, the maximum leakage-free RH is elucidated as a function of hydrogel uptake and swelling ratio. These insights guide the design of hydrogels with exceptional hygroscopicity that enable sorption-based devices to tackle water scarcity and the global energy crisis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a atmospheric water harvesting
|
650 |
|
4 |
|a hydrogel–salt composite
|
650 |
|
4 |
|a hygroscopic hydrogels
|
650 |
|
4 |
|a leakage
|
650 |
|
4 |
|a sorbents
|
650 |
|
4 |
|a sorption
|
650 |
|
4 |
|a thermoadsorptive energy storage
|
700 |
1 |
|
|a Díaz-Marín, Carlos D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gaugler, Leon C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a El Fil, Bachir
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xinyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Evelyn N
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 12 vom: 10. März, Seite e2211783
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:12
|g day:10
|g month:03
|g pages:e2211783
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202211783
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 12
|b 10
|c 03
|h e2211783
|