A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond

Non-autoregressive (NAR) generation, which is first proposed in neural machine translation (NMT) to speed up inference, has attracted much attention in both machine learning and natural language processing communities. While NAR generation can significantly accelerate inference speed for machine tra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 10 vom: 03. Okt., Seite 11407-11427
1. Verfasser: Xiao, Yisheng (VerfasserIn)
Weitere Verfasser: Wu, Lijun, Guo, Junliang, Li, Juntao, Zhang, Min, Qin, Tao, Liu, Tie-Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM357026705
003 DE-627
005 20250304191511.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3277122  |2 doi 
028 5 2 |a pubmed25n1189.xml 
035 |a (DE-627)NLM357026705 
035 |a (NLM)37200120 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Yisheng  |e verfasserin  |4 aut 
245 1 2 |a A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Non-autoregressive (NAR) generation, which is first proposed in neural machine translation (NMT) to speed up inference, has attracted much attention in both machine learning and natural language processing communities. While NAR generation can significantly accelerate inference speed for machine translation, the speedup comes at the cost of sacrificed translation accuracy compared to its counterpart, autoregressive (AR) generation. In recent years, many new models and algorithms have been designed/proposed to bridge the accuracy gap between NAR generation and AR generation. In this paper, we conduct a systematic survey with comparisons and discussions of various non-autoregressive translation (NAT) models from different aspects. Specifically, we categorize the efforts of NAT into several groups, including data manipulation, modeling methods, training criterion, decoding algorithms, and the benefit from pre-trained models. Furthermore, we briefly review other applications of NAR models beyond machine translation, such as grammatical error correction, text summarization, text style transfer, dialogue, semantic parsing, automatic speech recognition, and so on. In addition, we also discuss potential directions for future exploration, including releasing the dependency of KD, reasonable training objectives, pre-training for NAR, and wider applications, etc. We hope this survey can help researchers capture the latest progress in NAR generation, inspire the design of advanced NAR models and algorithms, and enable industry practitioners to choose appropriate solutions for their applications 
650 4 |a Journal Article 
700 1 |a Wu, Lijun  |e verfasserin  |4 aut 
700 1 |a Guo, Junliang  |e verfasserin  |4 aut 
700 1 |a Li, Juntao  |e verfasserin  |4 aut 
700 1 |a Zhang, Min  |e verfasserin  |4 aut 
700 1 |a Qin, Tao  |e verfasserin  |4 aut 
700 1 |a Liu, Tie-Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 10 vom: 03. Okt., Seite 11407-11427  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:10  |g day:03  |g month:10  |g pages:11407-11427 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3277122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 10  |b 03  |c 10  |h 11407-11427