TransWeaver : Weave Image Pairs for Class Agnostic Common Object Detection

Measuring the similarity of two images is of crucial importance in computer vision. Class agnostic common object detection is a nascent research topic about mining image similarity, which aims to detect common object pairs from two images without category information. This task is general and less r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 17., Seite 2947-2959
1. Verfasser: Guo, Xiaoqian (VerfasserIn)
Weitere Verfasser: Li, Xiangyang, Wang, Yaowei, Jiang, Shuqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM356984125
003 DE-627
005 20250304190914.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3275870  |2 doi 
028 5 2 |a pubmed25n1189.xml 
035 |a (DE-627)NLM356984125 
035 |a (NLM)37195843 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Xiaoqian  |e verfasserin  |4 aut 
245 1 0 |a TransWeaver  |b Weave Image Pairs for Class Agnostic Common Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2023 
500 |a Date Revised 28.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Measuring the similarity of two images is of crucial importance in computer vision. Class agnostic common object detection is a nascent research topic about mining image similarity, which aims to detect common object pairs from two images without category information. This task is general and less restrictive which explores the similarity between objects and can further describe the commonality of image pairs at the object level. However, previous works suffer from features with low discrimination caused by the lack of category information. Moreover, most existing methods compare objects extracted from two images in a simple and direct way, ignoring the internal relationships between objects in the two images. To overcome these limitations, in this paper, we propose a new framework called TransWeaver, which learns intrinsic relationships between objects. Our TransWeaver takes image pairs as input and flexibly captures the inherent correlation between candidate objects from two images. It consists of two modules (i.e., the representation-encoder and the weave-decoder) and captures efficient context information by weaving image pairs to make them interact with each other. The representation-encoder is used for representation learning, which can obtain more discriminative representations for candidate proposals. Furthermore, the weave-decoder weaves the objects from two images and is able to explore the inter-image and intra-image context information at the same time, bringing a better object matching ability. We reorganize the PASCAL VOC, COCO, and Visual Genome datasets to obtain training and testing image pairs. Extensive experiments demonstrate the effectiveness of the proposed TransWeaver which achieves state-of-the-art performance on all datasets 
650 4 |a Journal Article 
700 1 |a Li, Xiangyang  |e verfasserin  |4 aut 
700 1 |a Wang, Yaowei  |e verfasserin  |4 aut 
700 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 17., Seite 2947-2959  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:17  |g pages:2947-2959 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3275870  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 17  |h 2947-2959