Laser Electrochemical Deposition Hybrid Preparation of an Oil-Water Separation Mesh with Controllable Pore Diameter Based on a BP Neural Network

With the increasing problem of water pollution, oil-water separation technology has attracted widespread attention worldwide. In this study, we proposed laser electrochemical deposition hybrid preparation of an oil-water separation mesh and introduced a back-propagation (BP) neural network model to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 39(2023), 21 vom: 30. Mai, Seite 7281-7293
1. Verfasser: Wang, Manfei (VerfasserIn)
Weitere Verfasser: Xu, Jinkai, Ren, Wanfei, Wang, Jiaqi, Zou, Zhaoqiang, Wang, Xue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM356977013
003 DE-627
005 20250304190812.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c00136  |2 doi 
028 5 2 |a pubmed25n1189.xml 
035 |a (DE-627)NLM356977013 
035 |a (NLM)37195123 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Manfei  |e verfasserin  |4 aut 
245 1 0 |a Laser Electrochemical Deposition Hybrid Preparation of an Oil-Water Separation Mesh with Controllable Pore Diameter Based on a BP Neural Network 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.05.2023 
500 |a Date Revised 30.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the increasing problem of water pollution, oil-water separation technology has attracted widespread attention worldwide. In this study, we proposed laser electrochemical deposition hybrid preparation of an oil-water separation mesh and introduced a back-propagation (BP) neural network model to realize the regulation of metal filter mesh. Among them, the coating coverage and electrochemical deposition quality were improved by laser electrochemical deposition composite processing. Based on the BP neural network model, the pore size after electrochemical deposition could be obtained only by inputting the processing parameters into the model, enabling the prediction and control of the pore size of the processed stainless-steel mesh (SSM), and the maximum residual difference between the predicted value and the experimental value was 1.5%. According to the oil-water separation theory and practical requirements, the corresponding electrochemical deposition potential and electrochemical deposition time were determined by the BP neural network model, which reduced the cost and time loss. In addition, the prepared SSM was found to achieve efficient separation of oil and water mixtures, reaching 99.9% separation efficiency in a combination with oil-water separation, along with other performance tests without chemical modification. The prepared SSM showed good mechanical durability and the separation efficiency exceeded 95% after sandpaper abrasion, thus, still maintaining the separation ability of oil-water mixture. Compared to other similar preparation methods, the method proposed in this study has the advantages of controllable pore size, simplicity, convenience, environmental friendliness, and durable wear resistance, offering important application potential in the treatment of oily wastewater 
650 4 |a Journal Article 
700 1 |a Xu, Jinkai  |e verfasserin  |4 aut 
700 1 |a Ren, Wanfei  |e verfasserin  |4 aut 
700 1 |a Wang, Jiaqi  |e verfasserin  |4 aut 
700 1 |a Zou, Zhaoqiang  |e verfasserin  |4 aut 
700 1 |a Wang, Xue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 39(2023), 21 vom: 30. Mai, Seite 7281-7293  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:39  |g year:2023  |g number:21  |g day:30  |g month:05  |g pages:7281-7293 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c00136  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 39  |j 2023  |e 21  |b 30  |c 05  |h 7281-7293