|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM356950476 |
003 |
DE-627 |
005 |
20231226071537.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302969
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1189.xml
|
035 |
|
|
|a (DE-627)NLM356950476
|
035 |
|
|
|a (NLM)37192421
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Hongtao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synergetic Enhancement of Strength-Ductility and Thermoelectric Properties of Ag2 Te by Domain Boundaries
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Simultaneously improving the mechanical and thermoelectric (TE) properties is significant for the engineering applications of inorganic TE materials. In this work, a novel nanodomain strategy is developed for Ag2 Te compounds to yield 40% and 200% improved compressive strength (160 MPa) and fracture strain (16%) when compared to domain-free samples (115 MPa and 5.5%, respectively). The domained samples also achieve a 45% improvement in average ZT value. The domain boundaries (DBs) provide extra sites for dislocation nucleation while pinning the dislocation movement, resulting in superior strength and ductility. In addition, phonon scattering induced by DBs suppresses the lattice thermal conductivity of Ag2 Te and also reduces the weighted mobility. These findings provide new insights into grain and DB engineering for high-performance inorganic semiconductors with robust mechanical properties
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Ag2Te thermoelectric materials
|
650 |
|
4 |
|a domain boundaries
|
650 |
|
4 |
|a strength-ductility synergy
|
650 |
|
4 |
|a thermoelectric performance
|
700 |
1 |
|
|a Feng, Xiaobin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Zhongtao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Houjiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Luoqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Ling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhai, Pengcheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Snyder, G Jeffrey
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Guodong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qingjie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 35 vom: 26. Sept., Seite e2302969
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:35
|g day:26
|g month:09
|g pages:e2302969
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302969
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 35
|b 26
|c 09
|h e2302969
|