WaveNet : Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection

In recent years, various neural network architectures for computer vision have been devised, such as the visual transformer and multilayer perceptron (MLP). A transformer based on an attention mechanism can outperform a traditional convolutional neural network. Compared with the convolutional neural...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 16., Seite 3027-3039
1. Verfasser: Zhou, Wujie (VerfasserIn)
Weitere Verfasser: Sun, Fan, Jiang, Qiuping, Cong, Runmin, Hwang, Jenq-Neng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM356946630
003 DE-627
005 20231226071532.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3275538  |2 doi 
028 5 2 |a pubmed24n1189.xml 
035 |a (DE-627)NLM356946630 
035 |a (NLM)37192028 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Wujie  |e verfasserin  |4 aut 
245 1 0 |a WaveNet  |b Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2023 
500 |a Date Revised 28.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, various neural network architectures for computer vision have been devised, such as the visual transformer and multilayer perceptron (MLP). A transformer based on an attention mechanism can outperform a traditional convolutional neural network. Compared with the convolutional neural network and transformer, the MLP introduces less inductive bias and achieves stronger generalization. In addition, a transformer shows an exponential increase in the inference, training, and debugging times. Considering a wave function representation, we propose the WaveNet architecture that adopts a novel vision task-oriented wavelet-based MLP for feature extraction to perform salient object detection in RGB (red-green-blue)-thermal infrared images. In addition, we apply knowledge distillation to a transformer as an advanced teacher network to acquire rich semantic and geometric information and guide WaveNet learning with this information. Following the shortest-path concept, we adopt the Kullback-Leibler distance as a regularization term for the RGB features to be as similar to the thermal infrared features as possible. The discrete wavelet transform allows for the examination of frequency-domain features in a local time domain and time-domain features in a local frequency domain. We apply this representation ability to perform cross-modality feature fusion. Specifically, we introduce a progressively cascaded sine-cosine module for cross-layer feature fusion and use low-level features to obtain clear boundaries of salient objects through the MLP. Results from extensive experiments indicate that the proposed WaveNet achieves impressive performance on benchmark RGB-thermal infrared datasets. The results and code are publicly available at https://github.com/nowander/WaveNet 
650 4 |a Journal Article 
700 1 |a Sun, Fan  |e verfasserin  |4 aut 
700 1 |a Jiang, Qiuping  |e verfasserin  |4 aut 
700 1 |a Cong, Runmin  |e verfasserin  |4 aut 
700 1 |a Hwang, Jenq-Neng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 16., Seite 3027-3039  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:16  |g pages:3027-3039 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3275538  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 16  |h 3027-3039