|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM356938018 |
003 |
DE-627 |
005 |
20231226071521.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c00268
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1189.xml
|
035 |
|
|
|a (DE-627)NLM356938018
|
035 |
|
|
|a (NLM)37191156
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Yao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Construct of an Electrodeposited Cobalt-Molybdenum Film and Evaluation of Its Efficiency in Hydrogen Evolution
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.06.2023
|
500 |
|
|
|a Date Revised 06.06.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Hydrogen is a valuable clean energy source, and electrolysis to produce hydrogen from water is a crucial component. However, a major problem of hydrogen generation by electrolysis is its large overpotential and poor economics. To reduce the overpotential, we mainly use nickel foam and Co-Mo ions as feedstock and create an efficient catalytic material by electrodeposition. The Co-Mo interaction improves the current efficiency. In 1 mol/L NaOH solution, the overpotential of the Co-Mo-NF composites was low when the current density is -10 mA/cm2, with the best value reaching 45.3 mV, which is less than those of Co-NF (94.4 mV) and Mo-NF (88.2 mV). All deposits had similar Tafel slopes in the 77.9 mV/decade range. The catalyst does not just have a favorable effect on hydrogen formation but also has a surprisingly high double-layer capacitance (up to 180 mF/cm2) and good stability. This research provides an impactful approach for developing a non-precious metal HER catalyst for industrial hydrogen production
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wang, Wenjing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xinliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Qiaoling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Chengcheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 22 vom: 06. Juni, Seite 7605-7612
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:22
|g day:06
|g month:06
|g pages:7605-7612
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c00268
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 22
|b 06
|c 06
|h 7605-7612
|