|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM356935221 |
003 |
DE-627 |
005 |
20231226071518.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.16755
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1189.xml
|
035 |
|
|
|a (DE-627)NLM356935221
|
035 |
|
|
|a (NLM)37190869
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chang, Kuang-Yu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.07.2023
|
500 |
|
|
|a Date Revised 31.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a CommentIn: Glob Chang Biol. 2023 Aug;29(15):4175-4177. - PMID 37191537
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 John Wiley & Sons Ltd.
|
520 |
|
|
|a The recent rise in atmospheric methane (CH4 ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year-1 ) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a benchmarking
|
650 |
|
4 |
|a bottom-up models
|
650 |
|
4 |
|a eddy covariance
|
650 |
|
4 |
|a methane emissions
|
650 |
|
4 |
|a observational constraints
|
650 |
|
4 |
|a top-down models
|
650 |
|
4 |
|a wetland modeling
|
650 |
|
7 |
|a Methane
|2 NLM
|
650 |
|
7 |
|a OP0UW79H66
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
700 |
1 |
|
|a Riley, William J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Collier, Nathan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McNicol, Gavin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fluet-Chouinard, Etienne
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Knox, Sara H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Delwiche, Kyle B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jackson, Robert B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Poulter, Benjamin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Saunois, Marielle
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chandra, Naveen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gedney, Nicola
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ishizawa, Misa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ito, Akihiko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Joos, Fortunat
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kleinen, Thomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Maggi, Federico
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McNorton, Joe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Melton, Joe R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miller, Paul
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niwa, Yosuke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pasut, Chiara
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Patra, Prabir K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Changhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Sushi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Segers, Arjo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tian, Hanqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tsuruta, Aki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Yuanzhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Wenxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Qing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Qiuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhuang, Qianlai
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 29(2023), 15 vom: 16. Aug., Seite 4298-4312
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2023
|g number:15
|g day:16
|g month:08
|g pages:4298-4312
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.16755
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2023
|e 15
|b 16
|c 08
|h 4298-4312
|