Enhancement Mechanism of Fish-Scale Surface Texture on Flow Switching and Mixing Efficiency in Microfluidic Chips

Surface textures have a significant influence on surface-functional properties, which provide an alternative solution to create an accurate control of microfluidics flow. This paper studies the modulation ability of fish-scale surface textures on microfluidics flowing behavior on the ground of the e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 39(2023), 21 vom: 30. Mai, Seite 7396-7407
1. Verfasser: Zheng, Lu (VerfasserIn)
Weitere Verfasser: Fang, Mingyu, Chen, Wanqun, Huo, Dehong, Li, Haitao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Surface textures have a significant influence on surface-functional properties, which provide an alternative solution to create an accurate control of microfluidics flow. This paper studies the modulation ability of fish-scale surface textures on microfluidics flowing behavior on the ground of the early research on vibration machining-induced surface wettability variation. A microfluidic directional flow function is proposed by modifying the wall of the microchannel at the T-junction with different surface textures. The retention force caused by the surface tension difference between the two outlets in the T-junction is studied. In order to investigate the influence of fish-scale textures on the performance of the directional flowing valve and micromixer, T-shaped and Y-shaped microfluidic chips were fabricated. The experimental results indicated that with the aid of the fish-scale surface textures generated by vibration-assisted micromilling, directional liquid flow can be achieved at a specific input pressure range and the mixing efficiency of microfluidics can be improved dramatically
Beschreibung:Date Completed 30.05.2023
Date Revised 30.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00502