Study of synthesis and characterization of raw bagasse, its char and activated carbon prepared using chemical additive

This paper reports the use of naturally available raw material as sugarcane bagasse (SB) to prepare cost-effective activated carbon. Activated carbon preparation from SB by using ZnCl2 was carried out by chemical activation method. The raw bagasse, its char and activated carbon were characterized on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 87(2023), 9 vom: 03. Mai, Seite 2233-2249
1. Verfasser: Raut, Ekta R (VerfasserIn)
Weitere Verfasser: Bedmohata Thakur, Monita A, Chaudhari, Archana R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article bagasse 9006-97-7 Cellulose 9004-34-6 Charcoal 16291-96-6
Beschreibung
Zusammenfassung:This paper reports the use of naturally available raw material as sugarcane bagasse (SB) to prepare cost-effective activated carbon. Activated carbon preparation from SB by using ZnCl2 was carried out by chemical activation method. The raw bagasse, its char and activated carbon were characterized on the basis of iodine number, carbon, hydrogen, nitrogen analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area to check their effectiveness. During activated carbon synthesis, the impregnation ratio of SB and ZnCl2 was maintained at 1:1-1:3 and activation temperature was in the range of 600-900 °C for 1 h. From the characterization study, the highest iodine adsorption of activated carbon was found to be 1140.69 mg/g with a 1:2 ratio at 900 °C whereas char gives an iodine number of 529.63 mg/g at the same temperature. The BET surface area of raw bagasse, its char and activated carbon (SB-Zn2-900) obtained was 4.30, 514.27 and 1386.58 m2/g, respectively, which shows charrification and chemical activation improves surface area. The optimum ratio of impregnation and activation temperature was found to be 1:2 at 900 °C. In this work, activated carbon was successfully prepared and obtained product has better characteristics than previously reported studies
Beschreibung:Date Completed 17.05.2023
Date Revised 17.05.2023
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2023.134