End-to-End Pre-Training With Hierarchical Matching and Momentum Contrast for Text-Video Retrieval

Lately, video-language pre-training and text-video retrieval have attracted significant attention with the explosion of multimedia data on the Internet. However, existing approaches for video-language pre-training typically limit the exploitation of the hierarchical semantic information in videos, s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 15., Seite 5017-5030
1. Verfasser: Shen, Wenxue (VerfasserIn)
Weitere Verfasser: Song, Jingkuan, Zhu, Xiaosu, Li, Gongfu, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Lately, video-language pre-training and text-video retrieval have attracted significant attention with the explosion of multimedia data on the Internet. However, existing approaches for video-language pre-training typically limit the exploitation of the hierarchical semantic information in videos, such as frame semantic information and global video semantic information. In this work, we present an end-to-end pre-training network with Hierarchical Matching and Momentum Contrast named HMMC. The key idea is to explore the hierarchical semantic information in videos via multilevel semantic matching between videos and texts. This design is motivated by the observation that if a video semantically matches a text (can be a title, tag or caption), the frames in this video usually have semantic connections with the text and show higher similarity than frames in other videos. Hierarchical matching is mainly realized by two proxy tasks: Video-Text Matching (VTM) and Frame-Text Matching (FTM). Another proxy task: Frame Adjacency Matching (FAM) is proposed to enhance the single visual modality representations while training from scratch. Furthermore, momentum contrast framework was introduced into HMMC to form a multimodal momentum contrast framework, enabling HMMC to incorporate more negative samples for contrastive learning which contributes to the generalization of representations. We also collected a large-scale Chinese video-language dataset (over 763k unique videos) named CHVTT to explore the multilevel semantic connections between videos and texts. Experimental results on two major Text-video retrieval benchmark datasets demonstrate the advantages of our methods. We release our code at https://github.com/cheetah003/HMMC
Beschreibung:Date Revised 11.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3275071