Coaxial 3D Printing of Zeolite-Based Core-Shell Monolithic Cu-SSZ-13SiO2 Catalysts for Diesel Exhaust Treatment

© 2023 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 17 vom: 27. Apr., Seite e2302912
1. Verfasser: Wei, Yingzhen (VerfasserIn)
Weitere Verfasser: Wang, Shuang, Chen, Mengyang, Han, Jinfeng, Yang, Guoju, Wang, Qifei, Di, Jiancheng, Li, Hongli, Wu, Wenzheng, Yu, Jihong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Cu‐SSZ‐13 zeolite NH3‐SCR coaxial 3D printing core–shell structure monolithic catalysts
Beschreibung
Zusammenfassung:© 2023 Wiley‐VCH GmbH.
Core-shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core-shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite-based core-shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu-SSZ-13 zeolite acts as core. Compared to a Cu-SSZ-13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu-SSZ-13SiO2, resulting in a 10-20% higher NO conversion at200-550 °C under 300 000 cm3 g-1 h-1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core-shell monolithic catalysts with customized functionalities
Beschreibung:Date Revised 25.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202302912