BinderSpace : A package for sequence space analyses for datasets of affinity-selected oligonucleotides and peptide-based molecules

© 2023 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 22 vom: 15. Aug., Seite 1836-1844
1. Verfasser: Kelich, Payam (VerfasserIn)
Weitere Verfasser: Zhao, Huanhuan, Orona, Jose R, Vuković, Lela
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. affinity selection datasets clustering analysis dimensionality reduction high affinity binding sequence motif analysis sequence space Oligonucleotides Nanotubes, Carbon Peptides
LEADER 01000caa a22002652 4500
001 NLM356806138
003 DE-627
005 20231227131246.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27130  |2 doi 
028 5 2 |a pubmed24n1225.xml 
035 |a (DE-627)NLM356806138 
035 |a (NLM)37177839 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kelich, Payam  |e verfasserin  |4 aut 
245 1 0 |a BinderSpace  |b A package for sequence space analyses for datasets of affinity-selected oligonucleotides and peptide-based molecules 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.07.2023 
500 |a Date Revised 14.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley Periodicals LLC. 
520 |a Discovery of target-binding molecules, such as aptamers and peptides, is usually performed with the use of high-throughput experimental screening methods. These methods typically generate large datasets of sequences of target-binding molecules, which can be enriched with high affinity binders. However, the identification of the highest affinity binders from these large datasets often requires additional low-throughput experiments or other approaches. Bioinformatics-based analyses could be helpful to better understand these large datasets and identify the parts of the sequence space enriched with high affinity binders. BinderSpace is an open-source Python package that performs motif analysis, sequence space visualization, clustering analyses, and sequence extraction from clusters of interest. The motif analysis, resulting in text-based and visual output of motifs, can also provide heat maps of previously measured user-defined functional properties for all the motif-containing molecules. Users can also run principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analyses on whole datasets and on motif-related subsets of the data. Functionally important sequences can also be highlighted in the resulting PCA and t-SNE maps. If points (sequences) in two-dimensional maps in PCA or t-SNE space form clusters, users can perform clustering analyses on their data, and extract sequences from clusters of interest. We demonstrate the use of BinderSpace on a dataset of oligonucleotides binding to single-wall carbon nanotubes in the presence and absence of a bioanalyte, and on a dataset of cyclic peptidomimetics binding to bovine carbonic anhydrase protein. BinderSpace is openly accessible to the public via the GitHub website: https://github.com/vukoviclab/BinderSpace 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a affinity selection datasets 
650 4 |a clustering analysis 
650 4 |a dimensionality reduction 
650 4 |a high affinity binding 
650 4 |a sequence motif analysis 
650 4 |a sequence space 
650 7 |a Oligonucleotides  |2 NLM 
650 7 |a Nanotubes, Carbon  |2 NLM 
650 7 |a Peptides  |2 NLM 
700 1 |a Zhao, Huanhuan  |e verfasserin  |4 aut 
700 1 |a Orona, Jose R  |e verfasserin  |4 aut 
700 1 |a Vuković, Lela  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 22 vom: 15. Aug., Seite 1836-1844  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:22  |g day:15  |g month:08  |g pages:1836-1844 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27130  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 22  |b 15  |c 08  |h 1836-1844