Integrating biophysical crop growth models and whole genome prediction for their mutual benefit : a case study in wheat phenology

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 15 vom: 17. Aug., Seite 4415-4426
1. Verfasser: Jighly, Abdulqader (VerfasserIn)
Weitere Verfasser: Weeks, Anna, Christy, Brendan, O'Leary, Garry J, Kant, Surya, Aggarwal, Rajat, Hessel, David, Forrest, Kerrie L, Technow, Frank, Tibbits, Josquin F G, Totir, Radu, Spangenberg, German C, Hayden, Matthew J, Munkvold, Jesse, Daetwyler, Hans D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Biophysical crop models genotype by environment interaction phenology physiology wheat whole genome prediction
LEADER 01000naa a22002652 4500
001 NLM356806049
003 DE-627
005 20231226071238.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erad162  |2 doi 
028 5 2 |a pubmed24n1189.xml 
035 |a (DE-627)NLM356806049 
035 |a (NLM)37177829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jighly, Abdulqader  |e verfasserin  |4 aut 
245 1 0 |a Integrating biophysical crop growth models and whole genome prediction for their mutual benefit  |b a case study in wheat phenology 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.08.2023 
500 |a Date Revised 18.08.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Running crop growth models (CGM) coupled with whole genome prediction (WGP) as a CGM-WGP model introduces environmental information to WGP and genomic relatedness information to the genotype-specific parameters modelled through CGMs. Previous studies have primarily used CGM-WGP to infer prediction accuracy without exploring its potential to enhance CGM and WGP. Here, we implemented a heading and maturity date wheat phenology model within a CGM-WGP framework and compared it with CGM and WGP. The CGM-WGP resulted in more heritable genotype-specific parameters with more biologically realistic correlation structures between genotype-specific parameters and phenology traits compared with CGM-modelled genotype-specific parameters that reflected the correlation of measured phenotypes. Another advantage of CGM-WGP is the ability to infer accurate prediction with much smaller and less diverse reference data compared with that required for CGM. A genome-wide association analysis linked the genotype-specific parameters from the CGM-WGP model to nine significant phenology loci including Vrn-A1 and the three PPD1 genes, which were not detected for CGM-modelled genotype-specific parameters. Selection on genotype-specific parameters could be simpler than on observed phenotypes. For example, thermal time traits are theoretically more independent candidates, compared with the highly correlated heading and maturity dates, which could be used to achieve an environment-specific optimal flowering period. CGM-WGP combines the advantages of CGM and WGP to predict more accurate phenotypes for new genotypes under alternative or future environmental conditions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Biophysical crop models 
650 4 |a genotype by environment interaction 
650 4 |a phenology 
650 4 |a physiology 
650 4 |a wheat 
650 4 |a whole genome prediction 
700 1 |a Weeks, Anna  |e verfasserin  |4 aut 
700 1 |a Christy, Brendan  |e verfasserin  |4 aut 
700 1 |a O'Leary, Garry J  |e verfasserin  |4 aut 
700 1 |a Kant, Surya  |e verfasserin  |4 aut 
700 1 |a Aggarwal, Rajat  |e verfasserin  |4 aut 
700 1 |a Hessel, David  |e verfasserin  |4 aut 
700 1 |a Forrest, Kerrie L  |e verfasserin  |4 aut 
700 1 |a Technow, Frank  |e verfasserin  |4 aut 
700 1 |a Tibbits, Josquin F G  |e verfasserin  |4 aut 
700 1 |a Totir, Radu  |e verfasserin  |4 aut 
700 1 |a Spangenberg, German C  |e verfasserin  |4 aut 
700 1 |a Hayden, Matthew J  |e verfasserin  |4 aut 
700 1 |a Munkvold, Jesse  |e verfasserin  |4 aut 
700 1 |a Daetwyler, Hans D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 74(2023), 15 vom: 17. Aug., Seite 4415-4426  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:74  |g year:2023  |g number:15  |g day:17  |g month:08  |g pages:4415-4426 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erad162  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2023  |e 15  |b 17  |c 08  |h 4415-4426