Making a Bird AI Expert Work for You and Me

As powerful as fine-grained visual classification (FGVC) is, responding your query with a bird name of "Whip-poor-will" or "Mallard" probably does not make much sense. This however commonly accepted in the literature, underlines a fundamental question interfacing AI and human - w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 10 vom: 18. Okt., Seite 12068-12084
1. Verfasser: Chang, Dongliang (VerfasserIn)
Weitere Verfasser: Pang, Kaiyue, Du, Ruoyi, Tong, Yujun, Song, Yi-Zhe, Ma, Zhanyu, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM356623106
003 DE-627
005 20231226070844.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3274593  |2 doi 
028 5 2 |a pubmed24n1188.xml 
035 |a (DE-627)NLM356623106 
035 |a (NLM)37159309 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Dongliang  |e verfasserin  |4 aut 
245 1 0 |a Making a Bird AI Expert Work for You and Me 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.09.2023 
500 |a Date Revised 20.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a As powerful as fine-grained visual classification (FGVC) is, responding your query with a bird name of "Whip-poor-will" or "Mallard" probably does not make much sense. This however commonly accepted in the literature, underlines a fundamental question interfacing AI and human - what constitutes transferable knowledge for human to learn from AI? This paper sets out to answer this very question using FGVC as a test bed. Specifically, we envisage a scenario where a trained FGVC model (the AI expert) functions as a knowledge provider in enabling average people (you and me) to become better domain experts ourselves. Assuming an AI expert trained using expert human labels, we anchor our focus on asking and providing solutions for two questions: (i) what is the best transferable knowledge we can extract from AI, and (ii) what is the most practical means to measure the gains in expertise given that knowledge? We propose to represent knowledge as highly discriminative visual regions that are expert-exclusive and instantiate it via a novel multi-stage learning framework. A human study of 15,000 trials shows our method is able to consistently improve people of divergent bird expertise to recognise once unrecognisable birds. We further propose a crude but benchmarkable metric TEMI and therefore allow future efforts in this direction to be comparable to ours without the need of large-scale human studies 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pang, Kaiyue  |e verfasserin  |4 aut 
700 1 |a Du, Ruoyi  |e verfasserin  |4 aut 
700 1 |a Tong, Yujun  |e verfasserin  |4 aut 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 10 vom: 18. Okt., Seite 12068-12084  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:10  |g day:18  |g month:10  |g pages:12068-12084 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3274593  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 10  |b 18  |c 10  |h 12068-12084