Ocean acidification alters foraging behaviour in Dungeness crab through impairment of the olfactory pathway

© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 14 vom: 18. Juli, Seite 4126-4139
1. Verfasser: Durant, Andrea (VerfasserIn)
Weitere Verfasser: Khodikian, Elissa, Porteus, Cosima S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Rh proteins ammonia climate change crustacean behaviour electrophysiology gene expression high CO2 immunohistochemistry low pH mehr... Carbon Dioxide 142M471B3J
Beschreibung
Zusammenfassung:© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Crustacean olfaction is fundamental to most aspects of living and communicating in aquatic environments and more broadly, for individual- and population-level success. Accelerated ocean acidification from elevated CO2 threatens the ability of crabs to detect and respond to important olfactory-related cues. Here, we demonstrate that the ecologically and economically important Dungeness crab (Metacarcinus magister) exhibits reduced olfactory-related antennular flicking responses to a food cue when exposed to near-future CO2 levels, adding to the growing body of evidence of impaired crab behaviour. Underlying this altered behaviour, we find that crabs have lower olfactory nerve sensitivities (twofold reduction in antennular nerve activity) in response to a food cue when exposed to elevated CO2 . This suggests that near-future CO2 levels will impact the threshold of detection of food by crabs. We also show that lower olfactory nerve sensitivity in elevated CO2 is accompanied by a decrease in the olfactory sensory neuron (OSN) expression of a principal chemosensory receptor protein, ionotropic receptor 25a (IR25a) which is fundamental for odorant coding and olfactory signalling cascades. The OSNs also exhibit morphological changes in the form of decreased surface areas of their somata. This study provides the first evidence of the effects of high CO2 levels at multiple levels of biological organization in marine crabs, linking physiological and cellular changes with whole animal behavioural responses
Beschreibung:Date Completed 15.06.2023
Date Revised 31.08.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.16738