Fast Learning Radiance Fields by Shooting Much Fewer Rays

Learning radiance fields has shown remarkable results for novel view synthesis. The learning procedure usually costs lots of time, which motivates the latest methods to speed up the learning procedure by learning without neural networks or using more efficient data structures. However, these special...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 08., Seite 2703-2718
1. Verfasser: Zhang, Wenyuan (VerfasserIn)
Weitere Verfasser: Xing, Ruofan, Zeng, Yunfan, Liu, Yu-Shen, Shi, Kanle, Han, Zhizhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM356585239
003 DE-627
005 20231226070756.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3267049  |2 doi 
028 5 2 |a pubmed24n1188.xml 
035 |a (DE-627)NLM356585239 
035 |a (NLM)37155389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Wenyuan  |e verfasserin  |4 aut 
245 1 0 |a Fast Learning Radiance Fields by Shooting Much Fewer Rays 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.05.2023 
500 |a Date Revised 18.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning radiance fields has shown remarkable results for novel view synthesis. The learning procedure usually costs lots of time, which motivates the latest methods to speed up the learning procedure by learning without neural networks or using more efficient data structures. However, these specially designed approaches do not work for most of radiance fields based methods. To resolve this issue, we introduce a general strategy to speed up the learning procedure for almost all radiance fields based methods. Our key idea is to reduce the redundancy by shooting much fewer rays in the multi-view volume rendering procedure which is the base for almost all radiance fields based methods. We find that shooting rays at pixels with dramatic color change not only significantly reduces the training burden but also barely affects the accuracy of the learned radiance fields. In addition, we also adaptively subdivide each view into a quadtree according to the average rendering error in each node in the tree, which makes us dynamically shoot more rays in more complex regions with larger rendering error. We evaluate our method with different radiance fields based methods under the widely used benchmarks. Experimental results show that our method achieves comparable accuracy to the state-of-the-art with much faster training 
650 4 |a Journal Article 
700 1 |a Xing, Ruofan  |e verfasserin  |4 aut 
700 1 |a Zeng, Yunfan  |e verfasserin  |4 aut 
700 1 |a Liu, Yu-Shen  |e verfasserin  |4 aut 
700 1 |a Shi, Kanle  |e verfasserin  |4 aut 
700 1 |a Han, Zhizhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 08., Seite 2703-2718  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:08  |g pages:2703-2718 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3267049  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 08  |h 2703-2718