Hierarchical Shape-Consistent Transformer for Unsupervised Point Cloud Shape Correspondence

Point cloud shape correspondence aims at accurately mapping one point cloud to another point cloud with various 3D shapes. Since point clouds are usually sparse, disordered, irregular, and with diverse shapes, it is challenging to learn consistent point cloud representations and achieve the accurate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 08., Seite 2734-2748
1. Verfasser: He, Jianfeng (VerfasserIn)
Weitere Verfasser: Deng, Jiacheng, Zhang, Tianzhu, Zhang, Zhe, Zhang, Yongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM356585212
003 DE-627
005 20231226070756.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3272821  |2 doi 
028 5 2 |a pubmed24n1188.xml 
035 |a (DE-627)NLM356585212 
035 |a (NLM)37155387 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Jianfeng  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Shape-Consistent Transformer for Unsupervised Point Cloud Shape Correspondence 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2023 
500 |a Date Revised 21.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point cloud shape correspondence aims at accurately mapping one point cloud to another point cloud with various 3D shapes. Since point clouds are usually sparse, disordered, irregular, and with diverse shapes, it is challenging to learn consistent point cloud representations and achieve the accurate matching of different point cloud shapes. To address the above issues, we propose a Hierarchical Shape-consistent TRansformer for unsupervised point cloud shape correspondence (HSTR), including a multi-receptive-field point representation encoder and a shape-consistent constrained module in a unified architecture. The proposed HSTR enjoys several merits. In the multi-receptive-field point representation encoder, we set progressively larger receptive fields in different blocks to simultaneously consider the local structure and the long-range context. In the shape-consistent constrained module, we design two novel shape selective whitening losses, which can complement each other to achieve suppression of features sensitive to shape change. Extensive experimental results on four standard benchmarks demonstrate the superiority and generalization ability of our approach to existing methods at the similar model scale, and our method achieves the new state-of-the-art results 
650 4 |a Journal Article 
700 1 |a Deng, Jiacheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhe  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 08., Seite 2734-2748  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:08  |g pages:2734-2748 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3272821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 08  |h 2734-2748