Planar Spin Glass with Topologically Protected Mazes in the Liquid Crystal Targeting for Reconfigurable Micro Security Media

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 36 vom: 11. Sept., Seite e2303077
1. Verfasser: Park, Geonhyeong (VerfasserIn)
Weitere Verfasser: Choi, Yun-Seok, Kwon, S Joon, Yoon, Dong Ki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article chiral liquid crystals optical anisotropy physical unclonable function spin glass topologically protected structures
LEADER 01000caa a22002652 4500
001 NLM356516954
003 DE-627
005 20240403234834.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202303077  |2 doi 
028 5 2 |a pubmed24n1362.xml 
035 |a (DE-627)NLM356516954 
035 |a (NLM)37148534 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Geonhyeong  |e verfasserin  |4 aut 
245 1 0 |a Planar Spin Glass with Topologically Protected Mazes in the Liquid Crystal Targeting for Reconfigurable Micro Security Media 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print-Electronic 
500 |a ErratumIn: Adv Mater. 2024 Apr 3;:e2402587. - PMID 38568395 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a The planar spin glass pattern is widely known for its inherent randomness, resulting from the geometrical frustration. As such, developing physical unclonable functions (PUFs)-which operate with device randomness-with planar spin glass patterns is a promising candidate for an advanced security systems in the upcoming digitalized society. Despite their inherent randomness, traditional magnetic spin glass patterns pose considerable obstacles in detection, making it challenging to achieve authentication in security systems. This necessitates the development of facilely observable mimetic patterns with similar randomness to overcome these challenges. Here, a straightforward approach is introduced using a topologically protected maze pattern in the chiral liquid crystals (LCs). This maze exhibits a comparable level of randomness to magnetic spin glass and can be reliably identified through the combination of optical microscopy with machine learning-based object detection techniques. The "information" embedded in the maze can be reconstructed through thermal phase transitions of the LCs in tens of seconds. Furthermore, incorporating various elements can enhance the optical PUF, resulting in a multi-factor security medium. It is expected that this security medium, based on microscopically controlled and macroscopically uncontrolled topologically protected structures, may be utilized as a next-generation security system 
650 4 |a Journal Article 
650 4 |a chiral liquid crystals 
650 4 |a optical anisotropy 
650 4 |a physical unclonable function 
650 4 |a spin glass 
650 4 |a topologically protected structures 
700 1 |a Choi, Yun-Seok  |e verfasserin  |4 aut 
700 1 |a Kwon, S Joon  |e verfasserin  |4 aut 
700 1 |a Yoon, Dong Ki  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 36 vom: 11. Sept., Seite e2303077  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:36  |g day:11  |g month:09  |g pages:e2303077 
856 4 0 |u http://dx.doi.org/10.1002/adma.202303077  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 36  |b 11  |c 09  |h e2303077