The good, the bad, and the phosphate : regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status

© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 239(2023), 1 vom: 05. Juli, Seite 29-46
1. Verfasser: Paries, Michael (VerfasserIn)
Weitere Verfasser: Gutjahr, Caroline
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Review Research Support, Non-U.S. Gov't arbuscular mycorrhiza pathogens phosphate starvation plant-microbe interactions rhizosphere microbiota root nodule symbiosis Phosphates Plant Proteins
Beschreibung
Zusammenfassung:© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
Phosphate (Pi ) is indispensable for life on this planet. However, for sessile land plants it is poorly accessible. Therefore, plants have developed a variety of strategies for enhanced acquisition and recycling of Pi . The mechanisms to cope with Pi limitation as well as direct uptake of Pi from the substrate via the root epidermis are regulated by a conserved Pi starvation response (PSR) system based on a family of key transcription factors (TFs) and their inhibitors. Furthermore, plants obtain Pi indirectly through symbiosis with mycorrhiza fungi, which employ their extensive hyphal network to drastically increase the soil volume that can be explored by plants for Pi . Besides mycorrhizal symbiosis, there is also a variety of other interactions with epiphytic, endophytic, and rhizospheric microbes that can indirectly or directly influence plant Pi uptake. It was recently discovered that the PSR pathway is involved in the regulation of genes that promote formation and maintenance of AM symbiosis. Furthermore, the PSR system influences plant immunity and can also be a target of microbial manipulation. It is known for decades that the nutritional status of plants influences the outcome of plant-microbe interactions. The first molecular explanations for these observations are now emerging
Beschreibung:Date Completed 02.06.2023
Date Revised 04.06.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.18933