First Report of Fusarium denticulatum Causing Chlorotic Leaf Distortion of Sweetpotato in China

Sweetpotato (Ipomoea batatas) is one of the most important crops in China. To gain a clearer picture of the occurrence of diseases on sweetpotato, 50 fields (100 plants/field) were randomly surveyed in prominent sweetpotato growing areas of Lulong county, Hebei Province in the years 2021-2022. Plant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - (2023) vom: 04. Mai
1. Verfasser: Gao, Bo (VerfasserIn)
Weitere Verfasser: Ma, Juan, Li, Xiuhua, Chen, Shulong, Wang, Rongyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Fusarium denticulatum chlorotic leaf distortion sweetpotato
LEADER 01000caa a22002652c 4500
001 NLM35646220X
003 DE-627
005 20250304175535.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-03-23-0535-PDN  |2 doi 
028 5 2 |a pubmed25n1187.xml 
035 |a (DE-627)NLM35646220X 
035 |a (NLM)37142963 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Bo  |e verfasserin  |4 aut 
245 1 0 |a First Report of Fusarium denticulatum Causing Chlorotic Leaf Distortion of Sweetpotato in China 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Sweetpotato (Ipomoea batatas) is one of the most important crops in China. To gain a clearer picture of the occurrence of diseases on sweetpotato, 50 fields (100 plants/field) were randomly surveyed in prominent sweetpotato growing areas of Lulong county, Hebei Province in the years 2021-2022. Plants showing chlorotic leaf distortion with mildly twisted young leaves and stunted vines were observed frequently. It was similar to the symptoms of chlorotic leaf distortion of sweetpotato (Clark et al. 2013). The incidence of disease with patch pattern ranged from 15% to 30%. Ten symptomatic leaves were excised, surface disinfested with 2% sodium hypochlorite for 1 min, rinsed three times in sterilized ddH2O, and cultured on potato dextrose agar (PDA) at 25°C. Nine fungal isolates were obtained. A pure culture of representative isolate FD10 obtained after serial hyphal tip transfer was examined for morphological and genetic characters. Colonies of isolate FD10 on PDA at 25°C were slow growing (4±0.1mm/day) with aerial, white-to-pink mycelium. Lobed colonies had greyish-orange pigmentation in reverse and conidia aggegated in false heads. Conidiophores were prostrate and short. Phialides were mostly monophialidic but occasionally polyphialidic. Polyphialidic openings often denticulate in a rectangular arrangement. Microconidia were abundant, long, oval to allantoid, mostly none or one septate, and 4.79 to 9.53 × 2.08 to 3.22 μm (n = 20). Macroconidia were fusiform to falcate with a beaked apical cell and a footlike basal cell, 3 to 5 septate, and 25.03 to 52.92 × 2.56 to 4.49 µm. Chlamydospores were absent. All in agreement with the morphology of Fusarium denticulatum (Nirenberg and O'Donnell 1998). Genomic DNA of isolate FD10 was extracted. The EF-1α and β-tubulin genes were amplified and sequenced (O'Donnell and Cigelnik 1997; O'Donnell et al. 1998). The obtained sequences were deposited in GenBank (accession nos. OQ555191 and OQ555192). BLASTn revealed that those sequences showed 99.86% (EF-1α) and 99.93% (β-tubulin) homology with the relative sequences of F. denticulatum type strain CBS407.97 (accession nos. MT011002.1 and MT011060.1), respectively. Furthermore, a neighbor-joining phylogenetic tree based on the EF-1α and β-tubulin sequences revealed that the isolate FD10 clustered with F. denticulatum. Based on morphological characteristics and sequence analysis, the isolate FD10 associated with chlorotic leaf distortion of sweetpotato was identified as F. denticulatum. Pathogenicity tests were performed by immersing ten 25-cm-long vine-tip cuttings of cultivar Jifen 1 origin from tissue culture in a conidial suspension (1 × 106 conidia per ml) of isolate FD10. Vines immersed in sterile distilled water used as a control. All inoculated plants in 25-cm plastic pots were incubated in a climate chamber at 28℃ and 80% RH for two and half months and the control were incubated in a separate climate chamber. Nine inoculated plants developed chlorotic terminals, moderate interveinal chlorosis and slight leaf distortion. No symptoms were observed on the control plants. The pathogen was reisolated from inoculated leaves and matched the morphological and molecular characteristics of the original isolates, thus fulfilling Koch's postulates. To our knowledge, this is the first report of F. denticulatum causing chlorotic leaf distortion of sweetpotato in China. Its identification will promote the management of this disease in China 
650 4 |a Journal Article 
650 4 |a Fusarium denticulatum 
650 4 |a chlorotic leaf distortion 
650 4 |a sweetpotato 
700 1 |a Ma, Juan  |e verfasserin  |4 aut 
700 1 |a Li, Xiuhua  |e verfasserin  |4 aut 
700 1 |a Chen, Shulong  |e verfasserin  |4 aut 
700 1 |a Wang, Rongyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g (2023) vom: 04. Mai  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnas 
773 1 8 |g year:2023  |g day:04  |g month:05 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-03-23-0535-PDN  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 04  |c 05