Rapid Synthesis of Oxygen-Enriched Porous Carbon through a Microwave Method and Its Application in Supercapacitors

In this study, a strategy for the rapid and simple preparation of porous carbon (PC) using the microwave method was proposed. Oxygen-rich PC was synthesized by microwave irradiation in air, where potassium citrate and ZnCl2 served as the carbon source and microwave absorber, respectively. ZnCl2 achi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 19 vom: 16. Mai, Seite 6914-6923
1. Verfasser: Li, Xusen (VerfasserIn)
Weitere Verfasser: Lin, Liwei, Chen, Tianyu, Park, Sumin, Bae, Minjun, Cho, Youngseul, Lee, Jeongyeon, Zhang, Wang, Piao, Yuanzhe, Diao, Guowang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this study, a strategy for the rapid and simple preparation of porous carbon (PC) using the microwave method was proposed. Oxygen-rich PC was synthesized by microwave irradiation in air, where potassium citrate and ZnCl2 served as the carbon source and microwave absorber, respectively. ZnCl2 achieves microwave absorption through dipole rotation, which uses ion conduction to convert heat energy in the reaction system. In addition, potassium salt etching improved the porosity of PCs. The PC prepared under optimal conditions had a large specific surface area (902 m2·g-1) and exhibited a significant specific capacitance (380 F·g-1) in the three-electrode system at 1 A·g-1. The energy and power densities of the assembled symmetrical supercapacitor device based on PC-375W-0.4 were 32.7 W·h·kg-1 and 0.65 kW·kg-1, respectively, at a current density of 1 A·g-1. Even after 5000 cycles at 5 A·g-1 current density, the excellent cycle life retained 94% of its initial capacitance
Beschreibung:Date Completed 16.05.2023
Date Revised 16.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00596