Enhanced Visible-Photocatalytic Activities in Strong Acids and Strong Alkalis of Flexible Iron-SrTiO3 Nanofibrous Membranes

Traditional SrTiO3 (STO) materials have high brittleness and poor deformation resistance. In this work, macroscopically flexible iron-doped SrTiO3 (SFTO) nanofibrous membranes were prepared by electrospinning and calcination, which can be easily isolated and can maintain integrity to recycle as phot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 39(2023), 19 vom: 16. Mai, Seite 6885-6894
1. Verfasser: Wang, Nan (VerfasserIn)
Weitere Verfasser: Li, Zhao-Jian, Gao, Hong, Li, Ru, Xu, Xiao-Feng, Li, Tong, Long, Yun-Ze, Zhang, Hong-Di
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Traditional SrTiO3 (STO) materials have high brittleness and poor deformation resistance. In this work, macroscopically flexible iron-doped SrTiO3 (SFTO) nanofibrous membranes were prepared by electrospinning and calcination, which can be easily isolated and can maintain integrity to recycle as photocatalysts. Moreover, the SFTO nanofibrous membranes showed enhanced photocatalytic performance under strong acids (pH = 2) and strong alkalis (pH = 12). The SFTO nanofibrous membranes increased the catalytic rate of Congo red (CR) dye by about 10 times in visible light. The mechanism of photocatalytic activity enhancement was discussed by the combined effects of hydroxyl radicals and superoxide radicals. The successful preparation of SFTO nanofibrous membranes has offered a simple and economical approach to photocatalysis as well as environmental remediation
Beschreibung:Date Completed 16.05.2023
Date Revised 16.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00506