Position-Aware Relation Learning for RGB-Thermal Salient Object Detection

Salient object detection (SOD) is an important task in computer vision that aims to identify visually conspicuous regions in images. RGB-Thermal SOD combines two spectra to achieve better segmentation results. However, most existing methods for RGB-T SOD use boundary maps to learn sharp boundaries,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 2593-2607
1. Verfasser: Zhou, Heng (VerfasserIn)
Weitere Verfasser: Tian, Chunna, Zhang, Zhenxi, Li, Chengyang, Ding, Yuxuan, Xie, Yongqiang, Li, Zhongbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM356299899
003 DE-627
005 20231226070152.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3270801  |2 doi 
028 5 2 |a pubmed24n1187.xml 
035 |a (DE-627)NLM356299899 
035 |a (NLM)37126632 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Heng  |e verfasserin  |4 aut 
245 1 0 |a Position-Aware Relation Learning for RGB-Thermal Salient Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Salient object detection (SOD) is an important task in computer vision that aims to identify visually conspicuous regions in images. RGB-Thermal SOD combines two spectra to achieve better segmentation results. However, most existing methods for RGB-T SOD use boundary maps to learn sharp boundaries, which lead to sub-optimal performance as they ignore the interactions between isolated boundary pixels and other confident pixels. To address this issue, we propose a novel position-aware relation learning network (PRLNet) for RGB-T SOD. PRLNet explores the distance and direction relationships between pixels by designing an auxiliary task and optimizing the feature structure to strengthen intra-class compactness and inter-class separation. Our method consists of two main components: A signed distance map auxiliary module (SDMAM), and a feature refinement approach with direction field (FRDF). SDMAM improves the encoder feature representation by considering the distance relationship between foreground-background pixels and boundaries, which increases the inter-class separation between foreground and background features. FRDF rectifies the features of boundary neighborhoods by exploiting the features inside salient objects. It utilizes the direction relationship of object pixels to enhance the intra-class compactness of salient features. In addition, we constitute a transformer-based decoder to decode multispectral feature representation. Experimental results on three public RGB-T SOD datasets demonstrate that our proposed method not only outperforms the state-of-the-art methods, but also can be integrated with different backbone networks in a plug-and-play manner. Ablation study and visualizations further prove the validity and interpretability of our method 
650 4 |a Journal Article 
700 1 |a Tian, Chunna  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhenxi  |e verfasserin  |4 aut 
700 1 |a Li, Chengyang  |e verfasserin  |4 aut 
700 1 |a Ding, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Xie, Yongqiang  |e verfasserin  |4 aut 
700 1 |a Li, Zhongbo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 2593-2607  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:2593-2607 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3270801  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 2593-2607