Hollow Hierarchical Cu2 O-Derived Electrocatalysts Steering CO2 Reduction to Multi-Carbon Chemicals at Low Overpotentials

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 26 vom: 29. Juni, Seite e2301127
1. Verfasser: Li, Jinhan (VerfasserIn)
Weitere Verfasser: Xu, Keqiang, Liu, Fangming, Li, Youzeng, Hu, Yanfang, Chen, Xijie, Wang, Huan, Xu, Wence, Ni, Youxuan, Ding, Guoyu, Zhao, Tete, Yu, Meng, Xie, Wei, Cheng, Fangyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon dioxide reduction electrocatalysis heteroseed-induced synthesis hollow hierarchical microstructure multi-carbon chemicals
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
The electrochemical reduction of carbon dioxide into multi-carbon products (C2+ ) using renewably generated electricity provides a promising pathway for energy and environmental sustainability. Various oxide-derived copper (OD-Cu) catalysts have been showcased, but still require high overpotential to drive C2+ production owing to sluggish carbon-carbon bond formation and low CO intermediate (*CO) coverage. Here, the dilemma is circumvented by elaborately devising the OD-Cu morphology. First, computational studies propose a hollow and hierarchical OD-Cu microstructure that can generate a core-shell microenvironment to inhibit CO evolution and accelerate *CO dimerization via intermediate confinement and electric field enhancement, thereby boosting C2+ generation. Experimentally, the designed nanoarchitectures are synthesized through a heteroseed-induced approach followed by electrochemical activation. In situ spectroscopic studies further elaborate correlation between *CO dimerization and designed architectures. Remarkably, the hierarchical OD-Cu manifests morphology-dependent selectivity of CO2 reduction, giving a C2+ Faradaic efficiency of 75.6% at a considerably positive potential of -0.55 V versus reversible hydrogen electrode
Beschreibung:Date Completed 28.06.2023
Date Revised 28.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202301127