Eco-Friendly Superhydrophobic Coupling Conversion Coating with Corrosion Resistance on Magnesium Alloy
An eco-friendly superhydrophobic conversion coating is fabricated to enhance the corrosion resistance of the AZ31B Mg alloy by combining the deep eutectic solvent pretreatment and electrodeposition. The coral-like micro-nano structure formed by reacting deep eutectic solvent and Mg alloy provides a...
| Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 39(2023), 18 vom: 09. Mai, Seite 6355-6365 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2023
|
| Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
| Schlagworte: | Journal Article |
| Zusammenfassung: | An eco-friendly superhydrophobic conversion coating is fabricated to enhance the corrosion resistance of the AZ31B Mg alloy by combining the deep eutectic solvent pretreatment and electrodeposition. The coral-like micro-nano structure formed by reacting deep eutectic solvent and Mg alloy provides a structural basis for constructing a superhydrophobic coating. Cerium stearate with low surface energy is deposited on the structure, providing the coating's superhydrophobicity and the corrosion inhibition effect. Electrochemical test results demonstrate that the as-prepared superhydrophobic conversion coating (water contact angle at 154.7°) with a 99.68% protection effect significantly improves anticorrosion properties for the AZ31B Mg alloy. The corrosion current density decreases from 1.79 × 10-4 A·cm-2 of Mg substrate to 5.57 × 10-7 A·cm-2 of the coated sample. Besides, the electrochemical impedance modulus reaches the value of 1.69 × 103 Ω·cm2 and increases approximately 23 times in magnitude compared with the Mg substrate. Furthermore, the corrosion protection mechanism is attributed to the coupling effect of water-repellency barrier protection and corrosion inhibition, resulting in excellent corrosion resistance. Results demonstrate a promising strategy for the corrosion protection of Mg alloys by replacing the chromate conversion coating with the superhydrophobic coupling conversion coating |
|---|---|
| Beschreibung: | Date Completed 09.05.2023 Date Revised 09.05.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1520-5827 |
| DOI: | 10.1021/acs.langmuir.3c00025 |