Photocatalytic degradation of perfluorooctanoic acid on Pb-doped TiO2 coated with reduced graphene oxide

© 2023 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 95(2023), 5 vom: 04. Mai, Seite e10871
1. Verfasser: Chowdhury, Nusrat (VerfasserIn)
Weitere Verfasser: Choi, Hyeok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Lead doping Per- and polyfluoroalkyl substances (PFAS) Perfluorooctanoic acid (PFOA) Reduced graphene oxide TiO2 photocatalysis titanium dioxide 15FIX9V2JP fluorotelomer sulfonic acids graphene oxide mehr... perfluorooctanoic acid 947VD76D3L Lead 2P299V784P Fluorocarbons Water 059QF0KO0R Water Pollutants, Chemical
LEADER 01000caa a22002652c 4500
001 NLM356004120
003 DE-627
005 20250304165552.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10871  |2 doi 
028 5 2 |a pubmed25n1186.xml 
035 |a (DE-627)NLM356004120 
035 |a (NLM)37096740 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chowdhury, Nusrat  |e verfasserin  |4 aut 
245 1 0 |a Photocatalytic degradation of perfluorooctanoic acid on Pb-doped TiO2 coated with reduced graphene oxide 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2023 
500 |a Date Revised 09.05.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2023 Water Environment Federation. 
520 |a Poor reactivity of extraordinarily strong per- and polyfluoroalkyl substances (PFAS) with TiO2 makes it necessary to advance photocatalytic materials. In this present work, lead (Pb)-doped TiO2 coated with reduced graphene oxide (TiO2 -Pb/rGO) was prepared using hydrothermal method, and then its photocatalytic activity with various PFAS in water, especially perfluorooctanoic acid (PFOA), was investigated. PFAS decomposition kinetics by TiO2 -Pb/rGO was compared with neat TiO2 , Pb-doped TiO2 (TiO2 -Pb), and rGO-coated TiO2 (TiO2 /rGO). TiO2 -Pb/rGO (0.33 g/L) under ultraviolet (UV) showed superior removal of PFOA (10 mg/L) at 98% after 24 h, following TiO2 -Pb/UV at 80%, TiO2 /rGO/UV at 70%, TiO2 /UV at <10%, and UV at <10%. Doping of TiO2 with Pb and introduction of rGO to TiO2 greatly changed the physicochemical properties of TiO2 and the subsequent charge transfer mechanism. Radical scavenger experiments indicated that holes, superoxide radical anion, and singlet oxygen were responsible for the observed PFOA decomposition. Decomposition of PFOA by TiO2 -Pb/rGO under UV led to formation of short-chain perfluorocarboxylic acids (PFCAs) as reaction intermediates through step-by-step removal of CF2 units. Polyfluoroalkyl substance (6:2 fluorotelomer sulfonate [6:2FTS]) and long-chain PFCAs such as PFOA were significantly removed and defluorinated by TiO2 -Pb/rGO, whereas it was ineffective toward perfluorosulfonic acids and short-chain PFCAs. Removal kinetics decreased in the order of 6:2FTS > PFOA >> PFOS > PFHpA ≈ PFHxS ≈ PFBA ≈ PFBS. Pb doping to TiO2 /rGO showed better performance than Fe doping. Overall, this study implied that proper designing of TiO2 photocatalytic materials enables to expedite the decomposition of persistent organic pollutants in water, in particular highly challenging fluorinated chemicals. PRACTITIONER POINTS: Photocatalytic decomposition of various PFAS using TiO2 -Pb/rGO was studied. TiO2 -Pb/rGO shows better photoactivity towards PFAS than TiO2 -Pb and TiO2/rGO system. Scavenger test indicated that h+, • O2-, and iO2 are responsible for PFOA removal. Using TiO2 -Pb/rGO, PFOA removal was comparable under UVA, UVB, and UVC, and it can be explained by spanning UV absorption to 415 nm. Formation of intermediate PFCAs and F- ions confirmed PFOA removal via chemical decomposition 
650 4 |a Journal Article 
650 4 |a Lead doping 
650 4 |a Per- and polyfluoroalkyl substances (PFAS) 
650 4 |a Perfluorooctanoic acid (PFOA) 
650 4 |a Reduced graphene oxide 
650 4 |a TiO2 photocatalysis 
650 7 |a titanium dioxide  |2 NLM 
650 7 |a 15FIX9V2JP  |2 NLM 
650 7 |a fluorotelomer sulfonic acids  |2 NLM 
650 7 |a graphene oxide  |2 NLM 
650 7 |a perfluorooctanoic acid  |2 NLM 
650 7 |a 947VD76D3L  |2 NLM 
650 7 |a Lead  |2 NLM 
650 7 |a 2P299V784P  |2 NLM 
650 7 |a Fluorocarbons  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Water Pollutants, Chemical  |2 NLM 
700 1 |a Choi, Hyeok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 95(2023), 5 vom: 04. Mai, Seite e10871  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnas 
773 1 8 |g volume:95  |g year:2023  |g number:5  |g day:04  |g month:05  |g pages:e10871 
856 4 0 |u http://dx.doi.org/10.1002/wer.10871  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 95  |j 2023  |e 5  |b 04  |c 05  |h e10871