|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM35598055X |
003 |
DE-627 |
005 |
20250304165237.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202302170
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1186.xml
|
035 |
|
|
|a (DE-627)NLM35598055X
|
035 |
|
|
|a (NLM)37094375
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Song, Jiepeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Continuous-Wave Pumped Perovskite Lasers with Device Area Below 1 µm2
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Continuous-wave (CW) pumped lasers with device areas below 1 µm2 constitute a key step to meeting the energy efficiency requirement for on-chip optical communications. However, a debate about whether a sub-micrometer device size and low threshold can be simultaneously satisfied has persisted owing to insurmountable radiation losses when approaching the optical diffraction limit. Herein, a record-small CW optically pumped perovskite laser with a device area of 0.65 µm2 is demonstrated. The thresholds of sub-micrometer lasers can be found lower than those of several-micrometer counterparts, and are ascribed to the enlarged group refractive index and modal confinement resulting from the enhanced exciton-photon coupling. Moreover, the operation temperature is elevated to 150 K through the reduction in heat generation. These findings unveil the potential of exciton-polaritons in laser miniaturization, providing an alternative for developing low-threshold semiconductor lasers without artificial optical cavities, to approach the optical diffraction limit
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a continuous-wave
|
650 |
|
4 |
|a exciton-polaritons
|
650 |
|
4 |
|a lasing
|
650 |
|
4 |
|a microlasers
|
650 |
|
4 |
|a perovskites
|
700 |
1 |
|
|a Shang, Qiuyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Xinyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Yin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xinfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Qihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 30 vom: 01. Juli, Seite e2302170
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:30
|g day:01
|g month:07
|g pages:e2302170
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202302170
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 30
|b 01
|c 07
|h e2302170
|