Neural Attention-Driven Non-Maximum Suppression for Person Detection

Non-maximum suppression (NMS) is a post-processing step in almost every visual object detector. NMS aims to prune the number of overlapping detected candidate regions-of-interest (RoIs) on an image, in order to assign a single and spatially accurate detection to each object. The default NMS algorith...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 24., Seite 2454-2467
1. Verfasser: Symeonidis, Charalampos (VerfasserIn)
Weitere Verfasser: Mademlis, Ioannis, Pitas, Ioannis, Nikolaidis, Nikos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355974320
003 DE-627
005 20231226065458.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3268561  |2 doi 
028 5 2 |a pubmed24n1186.xml 
035 |a (DE-627)NLM355974320 
035 |a (NLM)37093726 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Symeonidis, Charalampos  |e verfasserin  |4 aut 
245 1 0 |a Neural Attention-Driven Non-Maximum Suppression for Person Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.05.2023 
500 |a Date Revised 02.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Non-maximum suppression (NMS) is a post-processing step in almost every visual object detector. NMS aims to prune the number of overlapping detected candidate regions-of-interest (RoIs) on an image, in order to assign a single and spatially accurate detection to each object. The default NMS algorithm (GreedyNMS) is fairly simple and suffers from severe drawbacks, due to its need for manual tuning. A typical case of failure with high application relevance is pedestrian/person detection in the presence of occlusions, where GreedyNMS doesn't provide accurate results. This paper proposes an efficient deep neural architecture for NMS in the person detection scenario, by capturing relations of neighboring RoIs and aiming to ideally assign precisely one detection per person. The presented Seq2Seq-NMS architecture assumes a sequence-to-sequence formulation of the NMS problem, exploits the Multihead Scale-Dot Product Attention mechanism and jointly processes both geometric and visual properties of the input candidate RoIs. Thorough experimental evaluation on three public person detection datasets shows favourable results against competing methods, with acceptable inference runtime requirements 
650 4 |a Journal Article 
700 1 |a Mademlis, Ioannis  |e verfasserin  |4 aut 
700 1 |a Pitas, Ioannis  |e verfasserin  |4 aut 
700 1 |a Nikolaidis, Nikos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 24., Seite 2454-2467  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:24  |g pages:2454-2467 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3268561  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 24  |h 2454-2467