|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM355927454 |
003 |
DE-627 |
005 |
20250304164534.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202300185
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1186.xml
|
035 |
|
|
|a (DE-627)NLM355927454
|
035 |
|
|
|a (NLM)37089030
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Aiwei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ultracoherent Single-Electron Emission of Carbon Nanotubes
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a A single-electron emitter, based on a single quantized energy level, can potentially achieve ultimate temporal and spatial coherence with a large emission current, which is desirable for atomic-resolution electron probes. This is first developed by constructing a nano-object on a metal tip to form a quantized double barrier structure. However, the single-electron-emission current can only achieve a picoampere level due to the low electron tunneling rate of the heterojunction with large barrier width, which limits the practical applications. In this study, carbon nanotubes (CNTs) serve as a single-electron emitter and a current up to 1.5 nA is demonstrated. The double barrier structure formed on the CNT tip enables a high tunneling rate (≈1012 s-1 ) due to the smaller barrier width. The emitter also shows high temporal coherence (energy dispersion of ≈10 meV) and spatial coherence (effective source radius of ≈0.85 nm). This work represents a highly coherent electron source to simplify the electron optics system of atomic-resolution electron microscopy and sub-10 nm electron beam lithography
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a coherent electron sources
|
650 |
|
4 |
|a field emission
|
650 |
|
4 |
|a resonant tunneling
|
650 |
|
4 |
|a single-electron emission
|
700 |
1 |
|
|a Zhao, Jiuzhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Ke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhenjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Qing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 31 vom: 20. Aug., Seite e2300185
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:31
|g day:20
|g month:08
|g pages:e2300185
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202300185
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 31
|b 20
|c 08
|h e2300185
|