Cultivation model and deficit irrigation strategy for reducing leakage of bundle sheath cells to CO2, improve 13C carbon isotope, photosynthesis and soybean yield in semi-arid areas

Copyright © 2023 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 285(2023) vom: 21. Juni, Seite 153979
1. Verfasser: Ren, Honglei (VerfasserIn)
Weitere Verfasser: Zhang, Fengyi, Zhu, Xiao, Lamlom, Sobhi F, Liu, Xiulin, Wang, Xueyang, Zhao, Kezhen, Wang, Jinsheng, Sun, Mingming, Yuan, Ming, Gao, Yuan, Wang, Jiajun, Zhang, Bixian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article (13)C carbon isotope Cell leakage of bundle-sheath Cultivation models Irrigation strategies Photosynthetic regulation Soybean production Carbon Dioxide 142M471B3J Carbon Isotopes mehr... Soil Water 059QF0KO0R
LEADER 01000caa a22002652 4500
001 NLM355904241
003 DE-627
005 20231227131223.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2023.153979  |2 doi 
028 5 2 |a pubmed24n1225.xml 
035 |a (DE-627)NLM355904241 
035 |a (NLM)37086696 
035 |a (PII)S0176-1617(23)00073-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Honglei  |e verfasserin  |4 aut 
245 1 0 |a Cultivation model and deficit irrigation strategy for reducing leakage of bundle sheath cells to CO2, improve 13C carbon isotope, photosynthesis and soybean yield in semi-arid areas 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.10.2023 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2023 Elsevier GmbH. All rights reserved. 
520 |a A better understanding of the photosynthesis and soil water storage regulation of soybean production will be helpful to develop a water conservation strategy under a rain-fed farming system. Reducing the leakage of CO2 bundle sheath cells and improving the photosynthesis capacity and gas exchange characteristics of soybean leaves will contribute to increase yield under the dryland agricultural system and provide a scientific basis. Therefore, during 2019 and 2020, soybean exposed to different cultivation modes to analyze the response curves of photosynthesis and CO2 under different deficit irrigation strategies. In this study, we used two cultivation models: RB: ridge covered with biodegradable film and furrow area not covered; CF: conventional flat land planting under four deficit irrigation modes (R: rainwater irrigation; IB: branch stage irrigation (220 mm); IP: Irrigation during podding (220 mm); IBP: branch stage irrigation (110 mm), podding stage irrigation (110 mm). Compared with CF-IBP treatment, RB-IBP had significant effects on rainwater collection, SWS, and soybean yield. Photo-response curve analysis showed that RB-IBP treatment a significant increase in Pn, Gs, Ci, Tr, leaf WUE, and chlorophyll ab content. Under different irrigation strategies, maximum net photosynthetic rate (Pnmax), light saturation point (LSP), and apparent quantum efficiency under RB-IBP treatment (α), Pn under respiration rate and CO2 response curve were significantly higher than that under CF cultivation mode. Compared with RB culture mode under different irrigation strategies, CF cultivation mode significantly increases Δ13C and CO2 sheath cell leakage (Փ); it also led to a significant decline in the ratio of Ci/Ca concentration. This study shows that RB-IBP treatment is the best water-saving strategy because it means reducing the leakage of CO2 from the bundle sheath, thus significantly increasing soil water storage, photosynthetic capacity, and soybean yield 
650 4 |a Journal Article 
650 4 |a (13)C carbon isotope 
650 4 |a Cell leakage of bundle-sheath 
650 4 |a Cultivation models 
650 4 |a Irrigation strategies 
650 4 |a Photosynthetic regulation 
650 4 |a Soybean production 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Carbon Isotopes  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Zhang, Fengyi  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiao  |e verfasserin  |4 aut 
700 1 |a Lamlom, Sobhi F  |e verfasserin  |4 aut 
700 1 |a Liu, Xiulin  |e verfasserin  |4 aut 
700 1 |a Wang, Xueyang  |e verfasserin  |4 aut 
700 1 |a Zhao, Kezhen  |e verfasserin  |4 aut 
700 1 |a Wang, Jinsheng  |e verfasserin  |4 aut 
700 1 |a Sun, Mingming  |e verfasserin  |4 aut 
700 1 |a Yuan, Ming  |e verfasserin  |4 aut 
700 1 |a Gao, Yuan  |e verfasserin  |4 aut 
700 1 |a Wang, Jiajun  |e verfasserin  |4 aut 
700 1 |a Zhang, Bixian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 285(2023) vom: 21. Juni, Seite 153979  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:285  |g year:2023  |g day:21  |g month:06  |g pages:153979 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2023.153979  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 285  |j 2023  |b 21  |c 06  |h 153979