|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM355899949 |
003 |
DE-627 |
005 |
20250304164132.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202301099
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1186.xml
|
035 |
|
|
|a (DE-627)NLM355899949
|
035 |
|
|
|a (NLM)37086266
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Meng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synchronous Interventions of Glucose and Mitochondrial Metabolisms for Antitumor Bioenergetic Therapy
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.07.2023
|
500 |
|
|
|a Date Revised 31.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Hydrogen sulfide (H2 S)-based mitochondrial bioenergetic intervention is an attractive therapeutic modality. However, its therapeutic efficacy is limited owing to metabolic plasticity, which allows tumors to shift their metabolic phenotype between oxidative phosphorylation and glycolysis for energy compensation. To overcome this flexibility, a glycopolymer containing a caged H2 S and hydrogen peroxide (H2 O2 ) dual-donor (1-thio-β-D-glucose [thioglucose]) is synthesized to wrap glucose oxidase (GOx) for complete depletion of tumorigenic energy sources. The loaded GOx catalyzes the glutathione-activated thioglucose to generate cytotoxic H2 S/H2 O2 , which further induces synergistic defects in mitochondrial function by suppressing cytochrome c oxidase expression and damaging the mitochondrial membrane potential. GOx also blocks glycolysis by depleting endogenous glucose. This synchronous intervention strategy exhibits good anticancer performance, broadening the horizon of antitumor bioenergetic therapy
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a glucose oxidases
|
650 |
|
4 |
|a glycolysis
|
650 |
|
4 |
|a hydrogen peroxide
|
650 |
|
4 |
|a hydrogen sulfide
|
650 |
|
4 |
|a oxidative phosphorylation
|
650 |
|
7 |
|a Glucose
|2 NLM
|
650 |
|
7 |
|a IY9XDZ35W2
|2 NLM
|
650 |
|
7 |
|a Antineoplastic Agents
|2 NLM
|
700 |
1 |
|
|a Luo, Xiaoming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Shan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yurong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Huishan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Yuantao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Kaiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Peng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 29 vom: 20. Juli, Seite e2301099
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:29
|g day:20
|g month:07
|g pages:e2301099
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202301099
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 29
|b 20
|c 07
|h e2301099
|