An Information-Theoretic Method to Automatic Shortcut Avoidance and Domain Generalization for Dense Prediction Tasks

Deep convolutional neural networks for dense prediction tasks are commonly optimized using synthetic data, as generating pixel-wise annotations for real-world data is laborious. However, the synthetically trained models do not generalize well to real-world environments. This poor "synthetic to...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 01. Sept., Seite 10615-10631
Auteur principal: Chuah, WeiQin (Auteur)
Autres auteurs: Tennakoon, Ruwan, Hoseinnezhad, Reza, Suter, David, Bab-Hadiashar, Alireza
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article