An Information-Theoretic Method to Automatic Shortcut Avoidance and Domain Generalization for Dense Prediction Tasks
Deep convolutional neural networks for dense prediction tasks are commonly optimized using synthetic data, as generating pixel-wise annotations for real-world data is laborious. However, the synthetically trained models do not generalize well to real-world environments. This poor "synthetic to...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 01. Sept., Seite 10615-10631
|
Auteur principal: |
Chuah, WeiQin
(Auteur) |
Autres auteurs: |
Tennakoon, Ruwan,
Hoseinnezhad, Reza,
Suter, David,
Bab-Hadiashar, Alireza |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2023
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |