An Information-Theoretic Method to Automatic Shortcut Avoidance and Domain Generalization for Dense Prediction Tasks

Deep convolutional neural networks for dense prediction tasks are commonly optimized using synthetic data, as generating pixel-wise annotations for real-world data is laborious. However, the synthetically trained models do not generalize well to real-world environments. This poor "synthetic to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 01. Sept., Seite 10615-10631
1. Verfasser: Chuah, WeiQin (VerfasserIn)
Weitere Verfasser: Tennakoon, Ruwan, Hoseinnezhad, Reza, Suter, David, Bab-Hadiashar, Alireza
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article